Journal of the Belarusian State University. Mathematics and Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Journal of the Belarusian State University. Mathematics and Informatics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of the Belarusian State University. Mathematics and Informatics, 2022, Volume 2, Pages 23–33
DOI: https://doi.org/10.33581/2520-6508-2022-2-23-33
(Mi bgumi186)
 

Differential equations and Optimal control

The small parameter method in the optimisation of a quasi-linear dynamical system problem

A. I. Kalinin, L. I. Lavrinovich, D. Y. Prudnikova

Belarusian State University, 4 Niezalieznasci Avenue, Minsk 220030, Belarus
References:
Abstract: We consider an optimisation problem for the transient process in a quasi-linear dynamical system (contains a small parameter at non-linearities) with a performance index that is a linear combination of energy costs and the duration of the process. An algorithm for constructing asymptotic approximations of a given order to the solution of this problem is proposed. The algorithm is based on the asymptotic decomposition by integer powers of a small parameter of the initial values of adjoint variables and the duration of the process that are finite-dimensional elements, according to which the solution of the problem is easily restored. The computational procedure of the algorithm includes solving the problem of optimising the transient process in a linear dynamical system, integrating systems of linear differential equations, and finding the roots of non-degenerate linear algebraic systems. We also show how the constructed asymptotic approximations can be used to construct optimal control in the problem under consideration for a given value of a small parameter.
Keywords: Small parameter; quasi-linear system; optimal control; asymptotic approximations.
Received: 29.03.2022
Revised: 02.06.2022
Accepted: 02.06.2022
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: A. I. Kalinin, L. I. Lavrinovich, D. Y. Prudnikova, “The small parameter method in the optimisation of a quasi-linear dynamical system problem”, Journal of the Belarusian State University. Mathematics and Informatics, 2 (2022), 23–33
Citation in format AMSBIB
\Bibitem{KalLavPru22}
\by A.~I.~Kalinin, L.~I.~Lavrinovich, D.~Y.~Prudnikova
\paper The small parameter method in the optimisation of a quasi-linear dynamical system problem
\jour Journal of the Belarusian State University. Mathematics and Informatics
\yr 2022
\vol 2
\pages 23--33
\mathnet{http://mi.mathnet.ru/bgumi186}
\crossref{https://doi.org/10.33581/2520-6508-2022-2-23-33}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4484472}
Linking options:
  • https://www.mathnet.ru/eng/bgumi186
  • https://www.mathnet.ru/eng/bgumi/v2/p23
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Journal of the Belarusian State University. Mathematics and Informatics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025