Journal of the Belarusian State University. Mathematics and Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Journal of the Belarusian State University. Mathematics and Informatics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of the Belarusian State University. Mathematics and Informatics, 2022, Volume 1, Pages 66–74
DOI: https://doi.org/10.33581/2520-6508-2022-1-66-74
(Mi bgumi178)
 

Discrete mathematics and Mathematical cybernetics

An upper bound on binomial coefficients in the de Moivre – Laplace form

S. V. Agievich

Research Institute for Applied Problems of Mathematics and Informatics, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
References:
Abstract: We provide an upper bound on binomial coefficients that holds over the entire parameter range an whose form repeats the form of the de Moivre – Laplace approximation of the symmetric binomial distribution. Using the bound, we estimate the number of continuations of a given Boolean function to bent functions, investigate dependencies into the Walsh – Hadamard spectra, obtain restrictions on the number of representations as sums of squares of integers bounded in magnitude.
Keywords: binomial coefficient; de Moivre – Laplace theorem; Walsh – Hadamard spectrum; bent function; sum of squares representation.
Received: 20.01.2022
Revised: 18.02.2022
Accepted: 21.02.2022
Bibliographic databases:
Document Type: Article
UDC: 519.118
Language: Russian
Citation: S. V. Agievich, “An upper bound on binomial coefficients in the de Moivre – Laplace form”, Journal of the Belarusian State University. Mathematics and Informatics, 1 (2022), 66–74
Citation in format AMSBIB
\Bibitem{Agi22}
\by S.~V.~Agievich
\paper An upper bound on binomial coefficients in the de Moivre – Laplace form
\jour Journal of the Belarusian State University. Mathematics and Informatics
\yr 2022
\vol 1
\pages 66--74
\mathnet{http://mi.mathnet.ru/bgumi178}
\crossref{https://doi.org/10.33581/2520-6508-2022-1-66-74}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4419183}
Linking options:
  • https://www.mathnet.ru/eng/bgumi178
  • https://www.mathnet.ru/eng/bgumi/v1/p66
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Journal of the Belarusian State University. Mathematics and Informatics
    Statistics & downloads:
    Abstract page:119
    Full-text PDF :70
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024