|
Discrete mathematics and Mathematical cybernetics
An upper bound on binomial coefficients in the de Moivre – Laplace form
S. V. Agievich Research Institute for Applied Problems of Mathematics and Informatics, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
Abstract:
We provide an upper bound on binomial coefficients that holds over the entire parameter range an whose form repeats the form of the de Moivre – Laplace approximation of the symmetric binomial distribution. Using the bound, we estimate the number of continuations of a given Boolean function to bent functions, investigate dependencies into the Walsh – Hadamard spectra, obtain restrictions on the number of representations as sums of squares of integers bounded in magnitude.
Keywords:
binomial coefficient; de Moivre – Laplace theorem; Walsh – Hadamard spectrum; bent function; sum of squares representation.
Received: 20.01.2022 Revised: 18.02.2022 Accepted: 21.02.2022
Citation:
S. V. Agievich, “An upper bound on binomial coefficients in the de Moivre – Laplace form”, Journal of the Belarusian State University. Mathematics and Informatics, 1 (2022), 66–74
Linking options:
https://www.mathnet.ru/eng/bgumi178 https://www.mathnet.ru/eng/bgumi/v1/p66
|
Statistics & downloads: |
Abstract page: | 119 | Full-text PDF : | 70 | References: | 27 |
|