Journal of the Belarusian State University. Mathematics and Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Journal of the Belarusian State University. Mathematics and Informatics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of the Belarusian State University. Mathematics and Informatics, 2019, Volume 3, Pages 122–128
DOI: https://doi.org/10.33581/2520-6508-2019-3-122-128
(Mi bgumi109)
 

This article is cited in 1 scientific paper (total in 1 paper)

Short communications

$t$-entropy formulae for concrete classes of transfer operators

K. Bardadyna, B. K. Kwaśniewskia, K. S. Kurnosenkob, A. V. Lebedevb

a University of Bialystok, 1M K. Ciolkowskiego Street, Bialystok 15-245, Poland
b Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
Full-text PDF (494 kB) Citations (1)
Abstract: $t$-Entropy is a principal object of the spectral theory of operators, generated by dynamical systems, namely, weighted shift operators and transfer operators. In essence $t$-entropy is the Fenchel – Legendre transform of the spectral potential of an operator in question and derivation of explicit formulae for its calculation is a rather nontrivial problem. In the article explicit formulae for t-entropy for two the most exploited in applications classes of transfer operators are obtained. Namely, we consider transfer operators generated by reversible mappings (i. e. weighted shift operators) and transfer operators generated by local homeomorphisms (i. e. Perron – Frobenius operators). In the first case $t$-entropy is computed by means of integrals with respect to invariant measures, while in the second case it is computed in terms of integrals with respect to invariant measures and Kolmogorov – Sinai entropy.
Keywords: transfer operator; spectral potential; $t$-entropy; invariant measure; metric entropy.
Received: 22.09.2019
Document Type: Article
UDC: 513.88
Language: Russian
Citation: K. Bardadyn, B. K. Kwaśniewski, K. S. Kurnosenko, A. V. Lebedev, “$t$-entropy formulae for concrete classes of transfer operators”, Journal of the Belarusian State University. Mathematics and Informatics, 3 (2019), 122–128
Citation in format AMSBIB
\Bibitem{BarKwaKur19}
\by K.~Bardadyn, B.~K.~Kwa{\'s}niewski, K.~S.~Kurnosenko, A.~V.~Lebedev
\paper $t$-entropy formulae for concrete classes of transfer operators
\jour Journal of the Belarusian State University. Mathematics and Informatics
\yr 2019
\vol 3
\pages 122--128
\mathnet{http://mi.mathnet.ru/bgumi109}
\crossref{https://doi.org/10.33581/2520-6508-2019-3-122-128}
Linking options:
  • https://www.mathnet.ru/eng/bgumi109
  • https://www.mathnet.ru/eng/bgumi/v3/p122
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Journal of the Belarusian State University. Mathematics and Informatics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024