Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2022, Number 2, Pages 3–18
DOI: https://doi.org/10.56415/basm.y2022.i2.p3
(Mi basm569)
 

This article is cited in 1 scientific paper (total in 1 paper)

Isostrophy Bryant-Schneider Group-Invariant of Bol Loops

Tèmítópé Gbóláhàn Jaíyéoláa, Benard Osobab, Anthony Oyemc

a Department of Mathematics, Obafemi Awolowo University, Ile-Ife 220005, Nigeria
b Department of Physical Sciences, Bells University of Technology, Ota, Ogun State, Nigeria
c Department of Mathematics, University of Lagos, Akoka, Nigeria
Full-text PDF (174 kB) Citations (1)
References:
Abstract: In the recent past, Grecu and Syrbu (in no order of preference) have jointly and individually reported some results on isostrophy invariants of Bol loops. Also, the Bryant-Schneider group of a loop has been found important in the study of the isotopy-isomorphy of some varieties of loops (e.g. Bol loops, Moufang loops, Osborn loops). In this current work, the Bryant-Schneider group of a middle Bol loop was linked with some of the isostrophy-group invariance results of Grecu and Syrbu. In particular, it was shown that some subgroups of the Bryant-Schneider group of a middle Bol loop are equal (or isomorphic) to the automorphism and pseudo-aumorphism groups of its corresponding right (left) Bol loop. Some elements of the Bryant-Schneider group of a middle Bol loop were shown to induce automorphisms and middle pseudo-automorphisms. It was discovered that if a middle Bol loop is of exponent $2$, then, its corresponding right (left) Bol loop is a left (right) G-loop.
Keywords and phrases: right Bol loop, left Bol loop, middle Bol loop, Bryant-Schneider group, pseudo-automorphism group.
Received: 25.11.2021
Revised: 05.12.2022
Bibliographic databases:
Document Type: Article
MSC: 20N055, 08A05
Language: Russian
Citation: Tèmítópé Gbóláhàn Jaíyéolá, Benard Osoba, Anthony Oyem, “Isostrophy Bryant-Schneider Group-Invariant of Bol Loops”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2022, no. 2, 3–18
Citation in format AMSBIB
\Bibitem{JaiOsoOye22}
\by T\`em{\'\i}t\'op\'e~Gb\'ol\'ah\`an~Ja{\'\i}y\'eol\'a, Benard~Osoba, Anthony~Oyem
\paper Isostrophy Bryant-Schneider Group-Invariant of Bol Loops
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2022
\issue 2
\pages 3--18
\mathnet{http://mi.mathnet.ru/basm569}
\crossref{https://doi.org/10.56415/basm.y2022.i2.p3}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4545290}
Linking options:
  • https://www.mathnet.ru/eng/basm569
  • https://www.mathnet.ru/eng/basm/y2022/i2/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
    Statistics & downloads:
    Abstract page:301
    Full-text PDF :21
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024