Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2020, Number 1, Pages 63–74 (Mi basm523)  

This article is cited in 1 scientific paper (total in 1 paper)

Research articles

On the number of topologies on countable skew fields

V. I. Arnautova, G. N. Ermakovab

a Vladimir Andrunachievici Institute of Mathematics and Computer Science, 5 Academiei str., MD-2028, Chisinau Moldova
b Transnistrian State University, 25 October str., 128, Tiraspol, 278000 Moldova
Full-text PDF (137 kB) Citations (1)
References:
Abstract: If a countable skew field $ R $ admits a non-discrete metrizable topology $ \tau _0 $, then the lattice of all topologies of this skew fields admits:
– Continuum of non-discrete metrizable topologies of the skew fields stronger than the topology $ \tau _0 $ and such that $ \sup \{\tau _1, \tau _2 \} $ is the discrete topology for any different topologies $ \tau_1$ and $\tau _2 $;
– Continuum of non-discrete metrizable topologies of the skew fields stronger than $ \tau _0 $ and such that any two of these topologies are comparable;
– Two to the power of continuum of topologies of the skew fields stronger than $ \tau _0 $, each of them is a coatom in the lattice of all topologies of the skew fields.
Keywords and phrases: countable skew fields, topological skew fields, Hausdorff topology, basis of the filter of neighborhoods, number of topologies on countable skew fields, lattice of topologies on skew fields.
Received: 28.01.2020
Document Type: Article
MSC: 22A05
Language: English
Citation: V. I. Arnautov, G. N. Ermakova, “On the number of topologies on countable skew fields”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2020, no. 1, 63–74
Citation in format AMSBIB
\Bibitem{ArnErm20}
\by V.~I.~Arnautov, G.~N.~Ermakova
\paper On the number of topologies on countable skew fields
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2020
\issue 1
\pages 63--74
\mathnet{http://mi.mathnet.ru/basm523}
Linking options:
  • https://www.mathnet.ru/eng/basm523
  • https://www.mathnet.ru/eng/basm/y2020/i1/p63
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
    Statistics & downloads:
    Abstract page:111
    Full-text PDF :25
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024