|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2016, Number 2, Pages 143–154
(Mi basm416)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Articles dedicated to anniversary of Prof. V. Belousov (continuation of previous issue)
On spectrum of medial $T_2$-quasigroups
A. V. Scerbacovaa, V. A. Shcherbacovb a Gubkin Russian State Oil and Gas University, Leninsky Prospect, 65, Moscow 119991, Russia
b Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, Academiei str. 5, MD-2028 Chişinău, Moldova
Abstract:
There exist medial $T_2$-quasigroups of any order of the form
$$
2^{k_1}3^{k_2}5^{k_3}11^{k_4}17^{k_5}23^{k_6}53^{k_7}59^{k_8}83^{k_9}101^{k_{10}}p_1^{\alpha_1}p_2^{\alpha_2}\dots p_m^{\alpha_m},
$$
where $k_1\geq2$, $k_2,\dots,k_{10}\geq1$, $p_i$ are prime numbers of the form $6t+1$, $\alpha_i \in\mathbb N$, $i\in\{1,\dots,m\}$. Some other results on $T_2$-quasigroups are given.
Keywords and phrases:
quasigroup, medial, spectrum, $T_2$-quasigroup, parastrophe, orthogonal quasigroups.
Received: 26.05.2016
Citation:
A. V. Scerbacova, V. A. Shcherbacov, “On spectrum of medial $T_2$-quasigroups”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2016, no. 2, 143–154
Linking options:
https://www.mathnet.ru/eng/basm416 https://www.mathnet.ru/eng/basm/y2016/i2/p143
|
Statistics & downloads: |
Abstract page: | 192 | Full-text PDF : | 47 | References: | 31 |
|