Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2015, Number 3, Pages 79–101 (Mi basm398)  

Research articles

Cubic differential systems with two affine real non-parallel invariant straight lines of maximal multiplicity

Olga Vacaraş

Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, 5 Academiei str., Chişinău, MD 2028, Moldova
References:
Abstract: In this article we classify all differential real cubic systems possessing two affine real non-parallel invariant straight lines of maximal multiplicity. We show that the maximal multiplicity of each of these lines is at most three. The maximal sequences of multiplicities: $m(3,3;1)$, $m(3,2;2)$, $m(3,1;3)$, $m(2,2;3)$, $m_\infty(2,1;3)$, $m_\infty(1,1;3)$ are determined. The normal forms and the corresponding perturbations of the cubic systems which realize these cases are given.
Keywords and phrases: cubic differential system, invariant straight line, algebraic multiplicity, geometric multiplicity.
Funding agency
The presented work has been supported by FP7-PEOPLE-2012-IRSES-316338 and 15.817.02.03F.
Received: 29.10.2015
Document Type: Article
MSC: 34C05
Language: English
Citation: Olga Vacaraş, “Cubic differential systems with two affine real non-parallel invariant straight lines of maximal multiplicity”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2015, no. 3, 79–101
Citation in format AMSBIB
\Bibitem{Vac15}
\by Olga~Vacara{\c s}
\paper Cubic differential systems with two affine real non-parallel invariant straight lines of maximal multiplicity
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2015
\issue 3
\pages 79--101
\mathnet{http://mi.mathnet.ru/basm398}
Linking options:
  • https://www.mathnet.ru/eng/basm398
  • https://www.mathnet.ru/eng/basm/y2015/i3/p79
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024