Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2015, Number 3, Pages 50–59 (Mi basm395)  

This article is cited in 1 scientific paper (total in 1 paper)

Research articles

Third Hankel determinant for the inverse of reciprocal of bounded turning functions

B. Venkateswarlua, D. Vamshee Krishnaa, N. Ranib

a Department of Mathematics, GIT, GITAM University, Visakhapatnam-530 045, A.P., India
b Praveenya Institute of Marine Engineering & Maritime Studies, Modavalasa-534 002, Visakhapatnam, A.P., India
Full-text PDF (127 kB) Citations (1)
References:
Abstract: In this paper we obtain the best possible upper bound to the third Hankel determinants for the functions belonging to the class of reciprocal of bounded turning functions using Toeplitz determinants.
Keywords and phrases: univalent function, function whose reciprocal derivative has a positive real part, third Hankel determinant, positive real function, Toeplitz determinants.
Received: 26.09.2015
Document Type: Article
MSC: 30C45, 30C50
Language: English
Citation: B. Venkateswarlu, D. Vamshee Krishna, N. Rani, “Third Hankel determinant for the inverse of reciprocal of bounded turning functions”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2015, no. 3, 50–59
Citation in format AMSBIB
\Bibitem{VenVamRan15}
\by B.~Venkateswarlu, D.~Vamshee Krishna, N.~Rani
\paper Third Hankel determinant for the inverse of reciprocal of bounded turning functions
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2015
\issue 3
\pages 50--59
\mathnet{http://mi.mathnet.ru/basm395}
Linking options:
  • https://www.mathnet.ru/eng/basm395
  • https://www.mathnet.ru/eng/basm/y2015/i3/p50
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024