Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2015, Number 2, Pages 27–35 (Mi basm387)  

Research articles

On $2$-absorbing primary subsemimodules over commutative semirings

Manish Kant Dubeya, Poonam Saroheb

a SAG, DRDO, Metcalf House, Delhi 110054, India
b Department of Mathematics, Lakshmibai College, University of Delhi, Delhi 110052, India
References:
Abstract: In this paper, we define $2$-absorbing primary subsemimodules of a semimodule $M$ over a commutative semiring $S$ with $1\neq0$ which is a generalization of primary subsemimodules of semimodules. A proper subsemimodule $N$ of a semimodule $M$ is said to be a $2$-absorbing primary subsemimodule of $M$ if $abm\in N$ implies $ab\in \sqrt{(N:M)}$ or $am\in N$ or $bm\in N$ for some $a,b\in S$ and $m\in M$. It is proved that if $K$ is a subtractive subsemimodule of $M$ and $\sqrt{(K:M)}$ is a subtractive ideal of $S$, then $K$ is a $2$-absorbing primary subsemimodule of $M$ if and only if whenever $IJN\subseteq K$ for some ideals $I, J$ of $S$ and a subsemimodule $N$ of $M$, then $IJ\subseteq\sqrt{(K:M)}$ or $IN\subseteq K$ or $JN\subseteq K$. In this paper, we prove a number of results concerning $2$-absorbing primary subsemimodules.
Keywords and phrases: semimodule, subtractive subsemimodule, $2$-absorbing primary subsemimodule, $Q$-subsemimodule.
Received: 13.10.2014
Revised: 22.04.2015
Document Type: Article
MSC: 16Y30, 16Y60
Language: English
Citation: Manish Kant Dubey, Poonam Sarohe, “On $2$-absorbing primary subsemimodules over commutative semirings”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2015, no. 2, 27–35
Citation in format AMSBIB
\Bibitem{DubSar15}
\by Manish~Kant~Dubey, Poonam~Sarohe
\paper On $2$-absorbing primary subsemimodules over commutative semirings
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2015
\issue 2
\pages 27--35
\mathnet{http://mi.mathnet.ru/basm387}
Linking options:
  • https://www.mathnet.ru/eng/basm387
  • https://www.mathnet.ru/eng/basm/y2015/i2/p27
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
    Statistics & downloads:
    Abstract page:221
    Full-text PDF :77
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024