Loading [MathJax]/jax/output/CommonHTML/jax.js
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2015, Number 1, Pages 103–114 (Mi basm384)  

This article is cited in 4 scientific papers (total in 4 papers)

On the number of ring topologies on countable rings

V. I. Arnautova, G. N. Ermakovab

a Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, 5 Academiei str., MD-2028, Chisinau, Moldova
b Transnistrian State University, 25 October str., 128, Tiraspol, 278000, Moldova
Full-text PDF (142 kB) Citations (4)
References:
Abstract: For any countable ring R and any non-discrete metrizable ring topology τ0, the lattice of all ring topologies admits:
– Continuum of non-discrete metrizable ring topologies stronger than the given topology τ0 and such that sup{τ1,τ2} is the discrete topology for any different topologies;
– Continuum of non-discrete metrizable ring topologies stronger than τ0 and such that any two of these topologies are comparable;
– Two to the power of continuum of ring topologies stronger than τ0, each of them being a coatom in the lattice of all ring topologies.
Keywords and phrases: countable ring, ring topology, Hausdorff topology, basis of the filter of neighborhoods, number of ring topologies, lattice of ring topologies, Stone-Čech compacification.
Received: 10.02.2015
Document Type: Article
MSC: 22A05
Language: English
Citation: V. I. Arnautov, G. N. Ermakova, “On the number of ring topologies on countable rings”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2015, no. 1, 103–114
Citation in format AMSBIB
\Bibitem{ArnErm15}
\by V.~I.~Arnautov, G.~N.~Ermakova
\paper On the number of ring topologies on countable rings
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2015
\issue 1
\pages 103--114
\mathnet{http://mi.mathnet.ru/basm384}
Linking options:
  • https://www.mathnet.ru/eng/basm384
  • https://www.mathnet.ru/eng/basm/y2015/i1/p103
  • This publication is cited in the following 4 articles:
    1. V. I. Arnautov, G. N. Ermakova, “On non-discrete topologization of some countable skew fields”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2021, no. 1-2, 84–92  mathnet
    2. V. I. Arnautov, G. N. Ermakova, “On the number of topologies on countable skew fields”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2020, no. 1, 63–74  mathnet
    3. V. I. Arnautov, G. N. Ermakova, “On the number of topologies on countable fields”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2019, no. 1, 79–90  mathnet
    4. V. I. Arnautov, G. N. Ermakova, “Lattice of all topologies of countable module over countable rings”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2016, no. 2, 63–70  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
    Statistics & downloads:
    Abstract page:311
    Full-text PDF :69
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025