Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2014, Number 2, Pages 3–8 (Mi basm364)  

Research articles

On a class of weighted composition operators on Fock space

Namita Das

Department of Mathematics, Utkal University, Vani Vihar, Bhubaneswar, Orissa, India 751004
References:
Abstract: Let $T_\phi$ be the Toeplitz operator defined on the Fock space $L_a^2(\mathbb C)$ with symbol $\phi\in L^\infty(\mathbb C)$. Let for $\lambda\in\mathbb C$, $k_\lambda(z)=e^{\frac{\bar\lambda z}2-\frac{|\lambda|^2}4}$, the normalized reproducing kernel at $\lambda$ for the Fock space $L_a^2(\mathbb C)$ and $t_\alpha(z)=z-\alpha,$ $z,\alpha\in\mathbb C$. Define the weighted composition operator $W_\alpha$ on $L_a^2(\mathbb C)$ as $(W_\alpha f)(z)=k_\alpha(z)(f\circ t_\alpha)(z)$. In this paper we have shown that if $M$ and $H$ are two bounded linear operators from $L_a^2(\mathbb C)$ into itself such that $MT_\psi H=T_{\psi\circ t_\alpha}$ for all $\psi\in L^\infty(\mathbb C)$, then $M$ and $H$ must be constant multiples of the weighted composition operator $W_\alpha$ and its adjoint respectively.
Keywords and phrases: Fock space, Toeplitz operators, weighted composition operators.
Received: 01.11.2011
Document Type: Article
MSC: 47B35, 32M15
Language: English
Citation: Namita Das, “On a class of weighted composition operators on Fock space”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2014, no. 2, 3–8
Citation in format AMSBIB
\Bibitem{Das14}
\by Namita~Das
\paper On a~class of weighted composition operators on Fock space
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2014
\issue 2
\pages 3--8
\mathnet{http://mi.mathnet.ru/basm364}
Linking options:
  • https://www.mathnet.ru/eng/basm364
  • https://www.mathnet.ru/eng/basm/y2014/i2/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
    Statistics & downloads:
    Abstract page:169
    Full-text PDF :73
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024