|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2013, Number 2-3, Pages 119–131
(Mi basm343)
|
|
|
|
Certain differential superordinations using a multiplier transformation and Ruscheweyh derivative
Alina Alb Lupaş Department of Mathematics and Computer Science, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania
Abstract:
In the present paper we define a new operator, by means of convolution product between Ruscheweyh derivative and the multiplier transformation $I(m,\lambda,l)$. For functions $f$ belonging to the class $\mathcal A$ we define the differential operator $IR_{\lambda,l}^m\colon\mathcal A\to\mathcal A$, $IR_{\lambda,l}^m(z):=(I(m,\lambda,l)\ast R^m)f(z)$, where $\mathcal A_n=\{f\in\mathcal H(U)\colon f(z)=z+a_{n+1}z^{n+1}+\dots,\ z\in U\}$ is the class of normalized analytic functions, with $\mathcal A_1=\mathcal A$. We study some differential superordinations regarding the operator $IR_{\lambda,l}^m$.
Keywords and phrases:
differential superordination, convex function, best subordinant, differential operator.
Received: 15.03.2013
Citation:
Alina Alb Lupaş, “Certain differential superordinations using a multiplier transformation and Ruscheweyh derivative”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2013, no. 2-3, 119–131
Linking options:
https://www.mathnet.ru/eng/basm343 https://www.mathnet.ru/eng/basm/y2013/i2/p119
|
Statistics & downloads: |
Abstract page: | 210 | Full-text PDF : | 40 | References: | 44 |
|