Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2013, Number 2-3, Pages 99–105 (Mi basm338)  

A selection theorem for set-valued maps into normally supercompact spaces

V. Valov

Department of Computer Science and Mathematics, Nipissing University, 100 College Drive, P.O. Box 5002, North Bay, ON, P1B 8L7 Canada
References:
Abstract: The following selection theorem is established:
Let $X$ be a compactum possessing a binary normal subbase $\mathcal S$ for its closed subsets. Then every set-valued $\mathcal S$-continuous map $\Phi\colon Z\to X$ with closed $\mathcal S$-convex values, where $Z$ is an arbitrary space, has a continuous single-valued selection. More generally, if $A\subset Z$ is closed and any map from $A$ to $X$ is continuously extendable to a map from $Z$ to $X$, then every selection for $\Phi|A$ can be extended to a selection for $\Phi$.
This theorem implies that if $X$ is a $\kappa$-metrizable (resp., $\kappa$-metrizable and connected) compactum with a normal binary closed subbase $\mathcal S$, then every open $\mathcal S$-convex surjection $f\colon X\to Y$ is a zero-soft (resp., soft) map. Our results provide some generalizations and specifications of Ivanov's results (see [5–7]) concerning superextensions of $\kappa$-metrizable compacta.
Keywords and phrases: continuous selections, Dugundji spaces, $\kappa$-metrizable spaces, spaces with closed binary normal subbase, superextensions.
Received: 14.08.2013
Document Type: Article
MSC: 54C65, 54F65
Language: English
Citation: V. Valov, “A selection theorem for set-valued maps into normally supercompact spaces”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2013, no. 2-3, 99–105
Citation in format AMSBIB
\Bibitem{Val13}
\by V.~Valov
\paper A selection theorem for set-valued maps into normally supercompact spaces
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2013
\issue 2-3
\pages 99--105
\mathnet{http://mi.mathnet.ru/basm338}
Linking options:
  • https://www.mathnet.ru/eng/basm338
  • https://www.mathnet.ru/eng/basm/y2013/i2/p99
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
    Statistics & downloads:
    Abstract page:225
    Full-text PDF :39
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024