|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2012, Number 3, Pages 16–27
(Mi basm322)
|
|
|
|
On Frattini subloops and normalizers of commutative Moufang loops
N. I. Sandu Tiraspol State University, str. Iablochkin, 5, Chisinau, MD-2069, Moldova
Abstract:
Let $L$ be a commutative Moufang loop (CML) with the multiplication group $\mathfrak M$, and let $\mathfrak F(L)$, $\mathfrak F(\mathfrak M)$ be the Frattini subloop of $L$ and Frattini subgroup of $\mathfrak M$. It is proved that $\mathfrak F(L)=L$ if and only if $\mathfrak F(\mathfrak M)=\mathfrak M$, and the structure of this CML is described. The notion of normalizer for subloops in CML is defined constructively. Using this it is proved that if $\mathfrak F(L)\neq L$, then $L$ satisfies the normalizer condition and that any divisible subgroup of $\mathfrak M$ is an abelian group and serves as a direct factor for $\mathfrak M$.
Keywords and phrases:
commutative Moufang loop, multiplication group, Frattini subloop, Frattini subgroup, normalizer, loop with normalizer condition, divisible loop.
Received: 06.04.2011
Citation:
N. I. Sandu, “On Frattini subloops and normalizers of commutative Moufang loops”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2012, no. 3, 16–27
Linking options:
https://www.mathnet.ru/eng/basm322 https://www.mathnet.ru/eng/basm/y2012/i3/p16
|
|