Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2012, Number 3, Pages 16–27 (Mi basm322)  

On Frattini subloops and normalizers of commutative Moufang loops

N. I. Sandu

Tiraspol State University, str. Iablochkin, 5, Chisinau, MD-2069, Moldova
References:
Abstract: Let $L$ be a commutative Moufang loop (CML) with the multiplication group $\mathfrak M$, and let $\mathfrak F(L)$, $\mathfrak F(\mathfrak M)$ be the Frattini subloop of $L$ and Frattini subgroup of $\mathfrak M$. It is proved that $\mathfrak F(L)=L$ if and only if $\mathfrak F(\mathfrak M)=\mathfrak M$, and the structure of this CML is described. The notion of normalizer for subloops in CML is defined constructively. Using this it is proved that if $\mathfrak F(L)\neq L$, then $L$ satisfies the normalizer condition and that any divisible subgroup of $\mathfrak M$ is an abelian group and serves as a direct factor for $\mathfrak M$.
Keywords and phrases: commutative Moufang loop, multiplication group, Frattini subloop, Frattini subgroup, normalizer, loop with normalizer condition, divisible loop.
Received: 06.04.2011
Bibliographic databases:
Document Type: Article
MSC: 20N05
Language: English
Citation: N. I. Sandu, “On Frattini subloops and normalizers of commutative Moufang loops”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2012, no. 3, 16–27
Citation in format AMSBIB
\Bibitem{San12}
\by N.~I.~Sandu
\paper On Frattini subloops and normalizers of commutative Moufang loops
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2012
\issue 3
\pages 16--27
\mathnet{http://mi.mathnet.ru/basm322}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3155839}
Linking options:
  • https://www.mathnet.ru/eng/basm322
  • https://www.mathnet.ru/eng/basm/y2012/i3/p16
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024