Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2011, Number 2, Pages 89–101 (Mi basm291)  

The variational approach to nonlinear evolution equations

Viorel Barbu

Octav Mayer Institute of Mathematics of Romanian Academy, Iaşi, Romania
References:
Abstract: In this paper, we present a few recent existence results via variational approach for the Cauchy problem
$$ \frac{dy}{dt}(t)+A(t)y(t)\ni f(t),\quad y(0)=y_0,\qquad t\in[0,T], $$
where $A(t)\colon V\to V'$ is a nonlinear maximal monotone operator of subgradient type in a dual pair $(V,V')$ of reflexive Banach spaces. In this case, the above Cauchy problem reduces to a convex optimization problem via Brezis–Ekeland device and this fact has some relevant implications in existence theory of infinite-dimensional stochastic differential equations.
Keywords and phrases: Cauchy problem, convex function, minimization problem, parabolic equations, porous media equation, stochastic partial differential equations.
Received: 15.07.2011
Bibliographic databases:
Document Type: Article
MSC: 34H05, 34LRO, 47E05
Language: English
Citation: Viorel Barbu, “The variational approach to nonlinear evolution equations”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2011, no. 2, 89–101
Citation in format AMSBIB
\Bibitem{Bar11}
\by Viorel Barbu
\paper The variational approach to nonlinear evolution equations
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2011
\issue 2
\pages 89--101
\mathnet{http://mi.mathnet.ru/basm291}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2895780}
\zmath{https://zbmath.org/?q=an:1243.35182}
Linking options:
  • https://www.mathnet.ru/eng/basm291
  • https://www.mathnet.ru/eng/basm/y2011/i2/p89
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
    Statistics & downloads:
    Abstract page:338
    Full-text PDF :70
    References:50
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024