Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2010, Number 1, Pages 106–120 (Mi basm254)  

Research articles

On a product of classes of algebraic systems

Vasile I. Ursu

Institute of Mathematics "Simion Stoilow" of the Romanian Academy
References:
Abstract: This paper defines a product of classes of algebraic systems and proves that it is a universal class, a quasi-variety or variety if these classes are universal classes, quasi-varieties or varieties, respectively.
Keywords and phrases: algebraic system, class, quasi-variety, variety, congruence, product.
Received: 06.02.2009
Bibliographic databases:
Document Type: Article
MSC: 08B25
Language: English
Citation: Vasile I. Ursu, “On a product of classes of algebraic systems”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2010, no. 1, 106–120
Citation in format AMSBIB
\Bibitem{Urs10}
\by Vasile~I.~Ursu
\paper On a~product of classes of algebraic systems
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2010
\issue 1
\pages 106--120
\mathnet{http://mi.mathnet.ru/basm254}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2676578}
\zmath{https://zbmath.org/?q=an:1210.08005}
Linking options:
  • https://www.mathnet.ru/eng/basm254
  • https://www.mathnet.ru/eng/basm/y2010/i1/p106
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024