|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2009, Number 3, Pages 81–95
(Mi basm240)
|
|
|
|
Research articles
Singular limits of solutions to the Cauchy problem for second order linear differential equations in Hilbert spaces
Galina Rusu Department of Mathematics and Informatics, Moldova State University, Cişinău, Moldova
Abstract:
We study the behavior of solutions to the problem
$$
\begin{cases}
\varepsilon\Big(u''_\varepsilon(t)+A_1u_\varepsilon(t)\Big)+u'_\varepsilon(t)+ A_0u_\varepsilon(t)=f(t),\quad t>0,\\
u_\varepsilon(0)=u_0,\qquad u'_\varepsilon(0)=u_1,
\end{cases}
$$
in the Hilbert space $H$ as $\varepsilon\to0$, where $A_1$ and $A_0$ are two linear selfadjoint operators.
Keywords and phrases:
singular perturbations, Cauchy problem, boundary function.
Received: 15.07.2009
Citation:
Galina Rusu, “Singular limits of solutions to the Cauchy problem for second order linear differential equations in Hilbert spaces”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2009, no. 3, 81–95
Linking options:
https://www.mathnet.ru/eng/basm240 https://www.mathnet.ru/eng/basm/y2009/i3/p81
|
|