Processing math: 100%
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2009, Number 2, Pages 111–130 (Mi basm230)  

This article is cited in 12 scientific papers (total in 12 papers)

Research articles

The cubic differential system with six real invariant straight lines along three directions

V. Puţunticăa, A. Şubăb

a Department of Mathematics, Tiraspol State University, Chişinău, Moldova
b Department of Mathematics, State University of Moldova, Chişinău, Moldova
References:
Abstract: We classify all cubic systems possessing exactly six real invariant straight lines along three directions taking into account their degree of invariance. We prove that there are 6 affine different classes of such systems. For every class we carried out the qualitative investigation in the Poincaré disc.
Keywords and phrases: cubic differential system, invariant line.
Received: 05.02.2009
Bibliographic databases:
Document Type: Article
MSC: 34C05
Language: English
Citation: V. Puţuntică, A. Şubă, “The cubic differential system with six real invariant straight lines along three directions”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2009, no. 2, 111–130
Citation in format AMSBIB
\Bibitem{PutUba09}
\by V.~Pu\c tuntic{\u a}, A.~\c Sub{\u a}
\paper The cubic differential system with six real invariant straight lines along three directions
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2009
\issue 2
\pages 111--130
\mathnet{http://mi.mathnet.ru/basm230}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2589932}
\zmath{https://zbmath.org/?q=an:1196.34039}
Linking options:
  • https://www.mathnet.ru/eng/basm230
  • https://www.mathnet.ru/eng/basm/y2009/i2/p111
  • This publication is cited in the following 12 articles:
    1. Bujac C. Schlomiuk D. Vulpe N., “Cubic Differential Systems With Invariant Straight Lines of Total Multiplicity Seven and Four Real Distinct Infinite Singularities”, Electron. J. Differ. Equ., 2021  mathscinet  isi
    2. Cristina Bujac, “The classification of a family of cubic differential systems in terms of configurations of invariant lines of the type (3,3)”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2019, no. 2, 79–98  mathnet
    3. Bujac C., Vulpe N., “Cubic Differential Systems With Invariant Straight Lines of Total Multiplicity Eight Possessing One Infinite Singularity”, Qual. Theor. Dyn. Syst., 16:1 (2017), 1–30  crossref  mathscinet  isi  scopus
    4. Alexandru Şubă, Vadim Repeşco, “Cubic systems with degenerate infinity and invariant straight lines of total parallel multiplicity five”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2016, no. 3, 38–56  mathnet
    5. Bujac C., Llibre J., Vulpe N., “First Integrals and Phase Portraits of Planar Polynomial Differential Cubic Systems With the Maximum Number of Invariant Straight Lines”, Qual. Theor. Dyn. Syst., 15:2 (2016), 327–348  crossref  mathscinet  zmath  isi  scopus
    6. Cristina Bujac, “One subfamily of cubic systems with invariant lines of total multiplicity eight and with two distinct real infinite singularities”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2015, no. 1, 48–86  mathnet
    7. Olga Vacaraş, “Cubic differential systems with two affine real non-parallel invariant straight lines of maximal multiplicity”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2015, no. 3, 79–101  mathnet
    8. Bujac C., Vulpe N., “Cubic Systems With Invariant Straight Lines of Total Multiplicity Eight and With Three Distinct Infinite Singularities”, Qual. Theor. Dyn. Syst., 14:1 (2015), 109–137  crossref  mathscinet  zmath  isi  scopus
    9. Bujac C., Vulpe N., “Cubic Differential Systems With Invariant Straight Lines of Total Multiplicity Eight and Four Distinct Infinite Singularities”, J. Math. Anal. Appl., 423:2 (2015), 1025–1080  crossref  mathscinet  zmath  isi  scopus
    10. Dumitru Cozma, “Center problem for cubic systems with a bundle of two invariant straight lines and one invariant conic”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2012, no. 1, 32–49  mathnet  mathscinet  zmath
    11. Alexandru Şubă, Vadim Repeşco, Vitalie Puţuntică, “Cubic systems with seven invariant straight lines of configuration (3,3,1)”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2012, no. 2, 81–98  mathnet  mathscinet  zmath
    12. Dimitru Cozma, “Center problem for a class of cubic systems with a bundle of two invariant straight lines and one invariant conic”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2010, no. 3, 51–66  mathnet  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
    Statistics & downloads:
    Abstract page:367
    Full-text PDF :130
    References:78
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025