|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2003, Number 2, Pages 51–58
(Mi basm197)
|
|
|
|
Research articles
On initial value problem in theory of the second order differential equations
Valerii Driumaa, Maxim Pavlovb a Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, Chişinău, Republic of Moldova
b Landau ITP, RAS, Moscow, Russia
Abstract:
We consider the properties of the second order nonlinear differential equations $b''=g(a,b,b')$ with the function $g(a,b,b'=c)$ satisfying the following nonlinear partial differential equation
\begin{gather*}
g_{aacc}+2cg_{abcc}+2gg_{accc}+c^2g_{bbcc}+2cgg_{bccc}+g^2g_{cccc}+(g_a+cg_b)g_{ccc}-
\\
4g_{abc}-4cg_{bbc}-cg_{c}g_{bcc}-3gg_{bcc}-g_cg_{acc}+4g_cg_{bc}-3g_bg_{cc}+6g_{bb}=0.
\end{gather*}
Any equation $b''=g(a,b,b')$ with this condition on the function $g(a,b,b')$ has the General Integral $F(a,b,x,y)=0$ shared with General Integral of the second order ODE's $y''=f(x,y,y'')$ with the condition $\frac{\partial^4f}{\partial y^{\prime4}}=0$ on the function $f(x,y,y')$ or $y''+a_1(x,y){y'}^3+3a_2(x,y){y''}^2+3a_3(x,y)y'+a_4(x,y)=0$ with some coefficients $a_i(x,y)$.
Keywords and phrases:
dual equation, space of linear elements, projective connection.
Received: 20.11.2002
Citation:
Valerii Driuma, Maxim Pavlov, “On initial value problem in theory of the second order differential equations”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2003, no. 2, 51–58
Linking options:
https://www.mathnet.ru/eng/basm197 https://www.mathnet.ru/eng/basm/y2003/i2/p51
|
Statistics & downloads: |
Abstract page: | 301 | Full-text PDF : | 76 | References: | 49 | First page: | 1 |
|