|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2003, Number 1, Pages 91–101
(Mi basm191)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Research articles
Solution of the center problem for cubic systems with a bundle of three invariant straight lines
Alexandru Şubă Faculty of Mathematics and Informatics, State University of Moldova, Chişinău, Moldova
Abstract:
For cubic differential system with three invariant straight lines which pass through the same point it is proved that a singular point with purely imaginary eigenvalues (weak focus) is a center if and only if the focal values $g_{2j+1}$, $j=\overline{1,5}$, vanish.
Keywords and phrases:
cubic systems of differential equations, center-focus problem, invariant algebraic curves, integrability.
Received: 29.11.2001
Citation:
Alexandru Şubă, “Solution of the center problem for cubic systems with a bundle of three invariant straight lines”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2003, no. 1, 91–101
Linking options:
https://www.mathnet.ru/eng/basm191 https://www.mathnet.ru/eng/basm/y2003/i1/p91
|
Statistics & downloads: |
Abstract page: | 248 | Full-text PDF : | 65 | References: | 52 | First page: | 1 |
|