Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2004, Number 3, Pages 25–40 (Mi basm176)  

This article is cited in 2 scientific papers (total in 2 papers)

Research articles

$GL(2,R)$-orbits of the polynomial sistems of differential equations

Angela Păşcanua, Alexandru Şubăb

a Department of Mathematics, State University of Tiraspol, Chişinău, Moldova
b Department of Mathematics, State University of Moldova, Chişinău, Moldova
Full-text PDF (184 kB) Citations (2)
References:
Abstract: In this work we study the orbits of the polynomial systems $\dot x=P(x_1,x_2)$, $\dot x=Q(x_1,x_2)$ by the action of the group of linear transformations $GL(2,R)$. It is shown that there are not polynomial systems with the dimension of $GL$-orbits equal to one and there exist $GL$-orbits of the dimension zero only for linear systems. On the basis of the dimension of $GL$-orbits the classification of polynomial systems with a singular point $O(0,0)$ with real and distinct eigenvalues is obtained. It is proved that on $GL$-orbits of the dimension less than four these systems are Darboux integrable.
Keywords and phrases: Polynomial differential system, $GL(2,R)$-orbit, resonance, integrability.
Received: 02.11.2004
Bibliographic databases:
Document Type: Article
MSC: 34C05, 58F14
Language: English
Citation: Angela Păşcanu, Alexandru Şubă, “$GL(2,R)$-orbits of the polynomial sistems of differential equations”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2004, no. 3, 25–40
Citation in format AMSBIB
\Bibitem{PasUba04}
\by Angela~P{\u a}{\c s}canu, Alexandru~\c Sub{\u a}
\paper $GL(2,R)$-orbits of the polynomial sistems of differential equations
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2004
\issue 3
\pages 25--40
\mathnet{http://mi.mathnet.ru/basm176}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2148007}
\zmath{https://zbmath.org/?q=an:1072.34031}
Linking options:
  • https://www.mathnet.ru/eng/basm176
  • https://www.mathnet.ru/eng/basm/y2004/i3/p25
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
    Statistics & downloads:
    Abstract page:260
    Full-text PDF :54
    References:53
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024