Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2004, Number 1, Pages 40–45 (Mi basm151)  

Research articles

Rings over which some preradicals are torsions

I. D. Bunu

ASEM, Chişinău, Moldova
References:
Abstract: Let $R$ be an associative ring with identity and $z$ be a pretorsion such that its filter consists of the essential left ideals of the ring $R$. In this paper, it is proved that every preradical $r\ge z$ of $R-Mod$ is a torsion if and only if the ring $R$ is a finite direct sum of pseudoinjective simple rings.
Keywords and phrases: Torsion (pretorsion), essential ideal, strongly prime ring, pseudoinjective module (ring).
Received: 30.01.2004
Bibliographic databases:
Document Type: Article
MSC: 16S90
Language: English
Citation: I. D. Bunu, “Rings over which some preradicals are torsions”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2004, no. 1, 40–45
Citation in format AMSBIB
\Bibitem{Bun04}
\by I.~D.~Bunu
\paper Rings over which some preradicals are torsions
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2004
\issue 1
\pages 40--45
\mathnet{http://mi.mathnet.ru/basm151}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2097595}
\zmath{https://zbmath.org/?q=an:1067.16052}
Linking options:
  • https://www.mathnet.ru/eng/basm151
  • https://www.mathnet.ru/eng/basm/y2004/i1/p40
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025