Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2004, Number 1, Pages 34–39 (Mi basm149)  

Research articles

Generating properties of biparabolic invertible polynomial maps in three variables

Yu. Bodnarchuk

University "Kiev Mohyla Academy", Kyiv, Ukraine
References:
Abstract: Invertible polynomial map of the standard 1-parabolic form $x_i \to f_i(x_1,\dots,x_{n-1})$, $i<n$, $x_n\to\alpha x_n+h_n(x_1,\ldots,x_{n-1})$ is a natural generalization of a triangular map. To generalize the previous results about triangular and bitriangular maps, it is shown that the group of tame polynomial transformations $TGA_3$ is generated by an affine group $AGL_3$ and any nonlinear biparabolic map of the form $U_0\cdot q_1\cdot U_1\cdot q_2\cdot U_2,$ where $U_i$ are linear maps and both $q_i$ have the standard 1-parabolic form.
Keywords and phrases: Invertible polynomial map, tame map, affine group, affine Cremona group.
Received: 23.09.2003
Bibliographic databases:
Document Type: Article
MSC: 14E07
Language: English
Citation: Yu. Bodnarchuk, “Generating properties of biparabolic invertible polynomial maps in three variables”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2004, no. 1, 34–39
Citation in format AMSBIB
\Bibitem{Bod04}
\by Yu.~Bodnarchuk
\paper Generating properties of biparabolic invertible polynomial maps in three variables
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2004
\issue 1
\pages 34--39
\mathnet{http://mi.mathnet.ru/basm149}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2097594}
\zmath{https://zbmath.org/?q=an:1076.14083}
Linking options:
  • https://www.mathnet.ru/eng/basm149
  • https://www.mathnet.ru/eng/basm/y2004/i1/p34
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025