Loading [MathJax]/jax/output/CommonHTML/jax.js
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2008, Number 1, Pages 4–18 (Mi basm1)  

This article is cited in 3 scientific papers (total in 3 papers)

The transvectants and the integrals for Darboux systems of differential equations

V. Baltag, I. Calin

Institute of Mathematics and Computer Science, Academy of Sciences of Moldova
Full-text PDF (162 kB) Citations (3)
References:
Abstract: We apply the algebraic theory of invariants of differential equations to integrate the polynomial differential systems dx/dt=P1(x,y)+xC(x,y), dy/dt=Q1(x,y)+yC(x,y), where real homogeneous polynomials P1 and Q1 have the first degree and C(x,y) is a real homogeneous polynomial of degree r1. In generic cases the invariant algebraic curves and the first integrals for these systems are constructed. The constructed invariant algebraic curves are expressed by comitants and invariants of investigated systems.
Keywords and phrases: Polynomial differential systems, Darboux integrability, first integrals, invariant algebraic curve, invariant, comitant, transvectant.
Received: 10.01.2008
Bibliographic databases:
MSC: 34C05, 58F14
Language: English
Citation: V. Baltag, I. Calin, “The transvectants and the integrals for Darboux systems of differential equations”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008, no. 1, 4–18
Citation in format AMSBIB
\Bibitem{BalCal08}
\by V.~Baltag, I.~Calin
\paper The transvectants and the integrals for Darboux systems of differential equations
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2008
\issue 1
\pages 4--18
\mathnet{http://mi.mathnet.ru/basm1}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2392676}
\zmath{https://zbmath.org/?q=an:1159.34028}
Linking options:
  • https://www.mathnet.ru/eng/basm1
  • https://www.mathnet.ru/eng/basm/y2008/i1/p4
  • This publication is cited in the following 3 articles:
    1. Iurie Calin, Valeriu Baltag, “Sufficient GL(2,R)-invariant center conditions for some classes of two-dimensional cubic differential systems”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2019, no. 2, 127–136  mathnet
    2. Iurie Calin, Stanislav Ciubotaru, “The Lyapunov quantities and the center conditions for a class of bidimensional polynomial systems of differential equations with nonlinearities of the fourth degree”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2017, no. 2, 112–130  mathnet  mathscinet
    3. Dana Schlomiuk, “New developments based on the mathematical legacy of C. S. Sibirschi”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2013, no. 1, 3–10  mathnet  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
    Statistics & downloads:
    Abstract page:313
    Full-text PDF :96
    References:73
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025