Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 1978, Issue 10, Pages 87–94 (Mi at9877)  

Adaptive Systems

Adaptive estimation from realizations of random processes and fields

G. A. Medvedev

Minsk
Abstract: A recurrence procedure is described which is used for estimation of unknown parameters linearly related with observations in the case where the observations are realizations of functions specified on intervals of appropriate dimension rather than a discrete number of figures or vectors.

Received: 16.01.1978
Bibliographic databases:
Document Type: Article
UDC: 62-506:519.272
Language: Russian
Citation: G. A. Medvedev, “Adaptive estimation from realizations of random processes and fields”, Avtomat. i Telemekh., 1978, no. 10, 87–94; Autom. Remote Control, 39:10 (1979), 1478–1484
Citation in format AMSBIB
\Bibitem{Med78}
\by G.~A.~Medvedev
\paper Adaptive estimation from realizations of random processes and fields
\jour Avtomat. i Telemekh.
\yr 1978
\issue 10
\pages 87--94
\mathnet{http://mi.mathnet.ru/at9877}
\zmath{https://zbmath.org/?q=an:0419.93077}
\transl
\jour Autom. Remote Control
\yr 1979
\vol 39
\issue 10
\pages 1478--1484
Linking options:
  • https://www.mathnet.ru/eng/at9877
  • https://www.mathnet.ru/eng/at/y1978/i10/p87
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:118
    Full-text PDF :50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024