Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 1978, Issue 8, Pages 117–122 (Mi at9797)  

Developing Systems

A direct method for solving the dynamic problem of industry plants deployment. II

S. B. Bur'yan

Moscow
Abstract: A technique for approximate solution of the problem and a modification of the estimation problem in the branch-and-bound method is discussed. A method is proposed for solution of a linear parametric problem with a parameter-dependent right-hand side of the constraints. Data on a computational experiment are given.

Received: 24.09.1977
Bibliographic databases:
Document Type: Article
UDC: 658.5.012.122
Language: Russian
Citation: S. B. Bur'yan, “A direct method for solving the dynamic problem of industry plants deployment. II”, Avtomat. i Telemekh., 1978, no. 8, 117–122; Autom. Remote Control, 39:8 (1979), 1197–1201
Citation in format AMSBIB
\Bibitem{Bur78}
\by S.~B.~Bur'yan
\paper A direct method for solving the dynamic problem of industry plants deployment. II
\jour Avtomat. i Telemekh.
\yr 1978
\issue 8
\pages 117--122
\mathnet{http://mi.mathnet.ru/at9797}
\zmath{https://zbmath.org/?q=an:0421.90067}
\transl
\jour Autom. Remote Control
\yr 1979
\vol 39
\issue 8
\pages 1197--1201
Linking options:
  • https://www.mathnet.ru/eng/at9797
  • https://www.mathnet.ru/eng/at/y1978/i8/p117
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024