Loading [MathJax]/jax/output/SVG/config.js
Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2007, Issue 1, Pages 3–10 (Mi at917)  

This article is cited in 7 scientific papers (total in 7 papers)

Deterministic Systems

Non-smooth guiding potentials in problems on forced oscillations

S. V. Korneva, V. V. Obukhovskiib

a Voronezh State Pedagogical University
b Voronezh State University
Full-text PDF (227 kB) Citations (7)
References:
Abstract: New classes of non-smooth guiding potentials are determined. The introduced concepts are used for solving the problem on periodic oscillations of controlled objects described by the system of differential equations and by the system of differential inclusions.
Presented by the member of Editorial Board: A. M. Krasnosel'skii

Received: 03.02.2006
English version:
Automation and Remote Control, 2007, Volume 68, Issue 1, Pages 1–8
DOI: https://doi.org/10.1134/S0005117907010018
Bibliographic databases:
Document Type: Article
PACS: 07.05.Dz
Language: Russian
Citation: S. V. Kornev, V. V. Obukhovskii, “Non-smooth guiding potentials in problems on forced oscillations”, Avtomat. i Telemekh., 2007, no. 1, 3–10; Autom. Remote Control, 68:1 (2007), 1–8
Citation in format AMSBIB
\Bibitem{KorObu07}
\by S.~V.~Kornev, V.~V.~Obukhovskii
\paper Non-smooth guiding potentials in problems on forced oscillations
\jour Avtomat. i Telemekh.
\yr 2007
\issue 1
\pages 3--10
\mathnet{http://mi.mathnet.ru/at917}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2295211}
\zmath{https://zbmath.org/?q=an:1195.93027}
\transl
\jour Autom. Remote Control
\yr 2007
\vol 68
\issue 1
\pages 1--8
\crossref{https://doi.org/10.1134/S0005117907010018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846667044}
Linking options:
  • https://www.mathnet.ru/eng/at917
  • https://www.mathnet.ru/eng/at/y2007/i1/p3
  • This publication is cited in the following 7 articles:
    1. S. V. Kornev, P. S. Korneva, N. E. Yakusheva, “Ob odnom podkhode v issledovanii periodicheskoi zadachi dlya sluchainykh differentsialnykh uravnenii”, Izv. vuzov. Matem., 2023, no. 5, 82–88  mathnet  crossref
    2. S. V. Kornev, P. S. Korneva, N. E. Iakusheva, “On One Approach to the Study of the Periodic Problem for Random Differential Equations”, Russ Math., 67:5 (2023), 60  crossref
    3. Kornev S., Nguyen Van Loi, Obukhovskii V., Wen Ch.-F., “Random Nonsmooth Integral Guiding Functions and Asymptotic Behavior of Trajectories For Random Differential Inclusions”, J. Nonlinear Convex Anal., 19:3, SI (2018), 493–500  mathscinet  isi
    4. Obukhovskii V., Kamenskii M., Kornev S., Liou Y.-Ch., “On Asymptotics of Solutions For Some Classes of Differential Inclusions Via the Generalized Guiding Functions Method”, J. Nonlinear Convex Anal., 18:5, SI (2017), 967–975  mathscinet  zmath  isi
    5. S. V. Kornev, “Multivalent guiding function in a problem on existence of periodic solutions of some classes of differential inclusions”, Russian Math. (Iz. VUZ), 60:11 (2016), 11–21  mathnet  crossref  isi
    6. Valeri Obukhovskii, Pietro Zecca, Nguyen Van Loi, Sergei Kornev, Lecture Notes in Mathematics, 2076, Method of Guiding Functions in Problems of Nonlinear Analysis, 2013, 25  crossref
    7. Nguyen Van Loi, Obukhovskii V., Zecca P., “Non-Smooth Guiding Functions and Periodic Solutions of Functional Differential Inclusions with Infinite Delay in Hilbert Spaces”, Fixed Point Theory, 13:2 (2012), 565–582  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:303
    Full-text PDF :97
    References:57
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025