|
Avtomatika i Telemekhanika, 2014, Issue 5, Pages 31–49
(Mi at9092)
|
|
|
|
This article is cited in 18 scientific papers (total in 18 papers)
Nonlinear Systems
Weakly monotone solutions of the Hamilton–Jacobi inequality and optimality conditions with positional controls
V. A. Dykhta Institute of System Dynamics and Control Theory, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
Abstract:
We obtain necessary global optimality conditions for classical optimal control problems based on positional controls. These controls are constructed with classical dynamical programming but with respect to upper (weakly monotone) solutions of the Hamilton–Jacobi equation instead of a Bellman function. We put special emphasis on the positional minimum condition in Pontryagin formalism that significantly strengthens the Maximum Principle for a wide class of problems and can be naturally combined with first order sufficient optimality conditions with linear Krotov's function. We compare the positional minimum condition with the modified nonsmooth Kaśkosz–Lojasiewicz Maximum Principle. All results are illustrated with specific examples.
Citation:
V. A. Dykhta, “Weakly monotone solutions of the Hamilton–Jacobi inequality and optimality conditions with positional controls”, Avtomat. i Telemekh., 2014, no. 5, 31–49; Autom. Remote Control, 75:5 (2014), 829–844
Linking options:
https://www.mathnet.ru/eng/at9092 https://www.mathnet.ru/eng/at/y2014/i5/p31
|
Statistics & downloads: |
Abstract page: | 437 | Full-text PDF : | 103 | References: | 99 | First page: | 26 |
|