Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2010, Issue 8, Pages 13–23 (Mi at862)  

This article is cited in 10 scientific papers (total in 10 papers)

Deterministic Systems

The root-locus method of synthesis of stable polynomials by adjustment of all coefficients

A. A. Nesenchuk

United Institute of Informatics Problems, Belarussian National Academy of Sciences, Minsk, Belarus
References:
Abstract: The problem of synthesis of an asymptotically stable polynomial on the basis of the initial unstable polynomial is solved. For the purpose of its solution, the notion of the extended (complete) root locus of a polynomial is introduced, which enables one to observe the dynamics of all its coefficients simultaneously, to isolate the root-locus trajectories, along which values of each coefficient change, to establish their interrelation, which provides a way of using these trajectories as “conductors” for the movement of roots in the desired domains. Values of the coefficients that ensure the stability of a polynomial are chosen from the stability intervals found on the stated trajectories as the nearest values to the values of appropriate coefficients of the unstable polynomial or by any other criterion, for example, the criterion of provision of the required stability reserve. The sphere of application of the root locus, which is conventionally used for synthesis of characteristic polynomials through the variation of only one parameter (coefficient) of the polynomial, is extended for the synthesis of polynomials by way of changing all coefficients and with many changing coefficients. Examples of application of the developed algorithm are considered for the synthesis of stable polynomials with constant and interval coefficients.
Presented by the member of Editorial Board: B. T. Polyak

Received: 20.04.2007
English version:
Automation and Remote Control, 2010, Volume 71, Issue 8, Pages 1515–1525
DOI: https://doi.org/10.1134/S0005117910080023
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Nesenchuk, “The root-locus method of synthesis of stable polynomials by adjustment of all coefficients”, Avtomat. i Telemekh., 2010, no. 8, 13–23; Autom. Remote Control, 71:8 (2010), 1515–1525
Citation in format AMSBIB
\Bibitem{Nes10}
\by A.~A.~Nesenchuk
\paper The root-locus method of synthesis of stable polynomials by adjustment of all coefficients
\jour Avtomat. i Telemekh.
\yr 2010
\issue 8
\pages 13--23
\mathnet{http://mi.mathnet.ru/at862}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2759620}
\zmath{https://zbmath.org/?q=an:1203.93071}
\transl
\jour Autom. Remote Control
\yr 2010
\vol 71
\issue 8
\pages 1515--1525
\crossref{https://doi.org/10.1134/S0005117910080023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000280973600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77958094785}
Linking options:
  • https://www.mathnet.ru/eng/at862
  • https://www.mathnet.ru/eng/at/y2010/i8/p13
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:362
    Full-text PDF :271
    References:40
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024