Abstract:
Proposed was a computationally efficient multialternative method for detection and estimation of faults additively involved in the right-hand sides of the linear equations of the state and measurement vectors. In distinction to the classical approach using a Kalman filter bank for each fault, the paper suggested an extended Kalman filter estimating a set of possible faults. The a posteriori probabilities and estimates of individual faults were shown to be readily calculable from the estimates and covariance matrices generated by the extended Kalman filter. Efficiency of the method is corroborated by modeling of a navigation complex with two inertial systems.
Presented by the member of Editorial Board:L. B. Rapoport
This publication is cited in the following 14 articles:
G. I. Emel'yantsev, A. P. Stepanov, E. V. Dranitsyna, B. A. Blazhnov, D. V. Volynskii, N. S. Potemina, “State-of-the-Art Satellite Multi-Antenna Systems. Specific Features and Results of GNSS Compass Development”, Gyroscopy Navig., 14:2 (2023), 97
D. A. Koshaev, “Multiple Model Algorithm for Single-Beacon Navigation of Autonomous Underwater Vehicle without Its A Priori Position. Part 1. Mathematical Formulation”, Gyroscopy Navig., 11:3 (2020), 230
D. Egea-Roca, G. Seco-Granados, J. A. López-Salcedo, “Comprehensive overview of quickest detection theory and its application to GNSS threat detection”, Gyroscopy Navig., 8:1 (2017), 1
M. Šimandl, O. Straka, J. Dunik, “Efficient adaptation of design parameters of derivative-free filters”, Autom. Remote Control, 77:2 (2016), 261–276
D. A. Koshaev, “Method of dummy measurements for multiple model estimation of processes in a linear stochastic system”, Autom. Remote Control, 77:6 (2016), 1009–1030
Kucherenko P.A., Sokolov S.V., “Solution of the Problem of Identifying Structures of Discrete Stochastic Objects Based on the Minimum Posterior Error Criterion of Distribution Densities”, Autom. Control Comp. Sci., 50:1 (2016), 28–36
D. A. Koshaev, “Redundancy and lack of information in specific problems of GNSS measurement processing”, Gyroscopy Navig., 6:3 (2015), 172
O. A. Stepanov, A. V. Loparev, I. B. Chelpanov, “Time-and-frequency approach to navigation information processing”, Autom. Remote Control, 75:6 (2014), 1090–1108
P. A. Kucherenko, S. V. Sokolov, S. M. Kovalev, “Solving the problem of structural stochastic identification of nonlinear discrete dynamic multistructural objects”, Aut. Control Comp. Sci., 47:6 (2013), 310
Akimov P.A., Matasov A.I., “Obrabotka rezultatov stendovykh ispytanii besplatformennykh inertsialnykh navigatsionnykh sistem metodami negladkoi optimizatsii pri nalichii sboev”, Giroskopiya i navigatsiya, 2012, no. 1, 14–26
Vorobev N.V., Remizova O.A., Syrokvashin V.V., Fokin A.L., “Uvelichenie grubosti k parametricheskoi neopredelennosti pri reshenii zadachi filtratsii v robastnykh sistemakh”, Izvestiya Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta (tekhnicheskogo universiteta), 2012, no. 14, 93–96
Khrul S.A., Sonkin D.M., “Adaptivnyi algoritm obrabotki potoka navigatsionnykh dannykh na osnove metoda diagnosticheskoi filtratsii”, Izvestiya tomskogo politekhnicheskogo universiteta, 321:5 (2012), 217–222
P. A. Akimov, A. I. Matasov, “Processing the results of SINS bench tests by methods of nonsmooth optimization in the presence of faults”, Gyroscopy Navig., 3:2 (2012), 91
Pavel A. Akimov, Alexander I. Matasov, “Estimation of Biases in Gyro Drifts by Means of l1-norm Approximation.”, IFAC Proceedings Volumes, 45:13 (2012), 442