Abstract:
Consideration was given to the nonlinear control systems for which the nonnegative orthant is a positive invariant set. For such systems, the M. A. Aizerman absolute stability hypothesis was shown to be valid.
\Bibitem{Chu10}
\by M.~Yu.~Churilova
\paper On absolute stability of positive systems
\jour Avtomat. i Telemekh.
\yr 2010
\issue 5
\pages 48--52
\mathnet{http://mi.mathnet.ru/at814}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2682330}
\zmath{https://zbmath.org/?q=an:1218.93077}
\elib{https://elibrary.ru/item.asp?id=15138254}
\transl
\jour Autom. Remote Control
\yr 2010
\vol 71
\issue 5
\pages 772--775
\crossref{https://doi.org/10.1134/S0005117910050048}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279566000004}
\elib{https://elibrary.ru/item.asp?id=15332824}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77955109760}
Linking options:
https://www.mathnet.ru/eng/at814
https://www.mathnet.ru/eng/at/y2010/i5/p48
This publication is cited in the following 5 articles:
Violaine Piengeon, Chris Guiver, “A linear dissipativity approach to incremental input-to-state stability for a class of positive Lur'e systems”, International Journal of Control, 2024, 1
Ross Drummond, Chris Guiver, Matthew C. Turner, “Aizerman Conjectures for a Class of Multivariate Positive Systems”, IEEE Trans. Automat. Contr., 68:8 (2023), 5073
Anton V. Proskurnikov, Alexander Davydov, Francesco Bullo, “The Yakubovich S-Lemma Revisited: Stability and Contractivity in Non-Euclidean Norms”, SIAM J. Control Optim., 61:4 (2023), 1955
Fornasini E., Valcher M.E., “Stability Properties of a Class of Positive Switched Systems with Rank One Difference”, Syst. Control Lett., 64 (2014), 12–19
Fainshil L., Margaliot M., “A Maximum Principle for the Stability Analysis of Positive Bilinear Control Systems with Applications to Positive Linear Switched Systems”, SIAM J. Control Optim., 50:4 (2012), 2193–2215