|
Avtomatika i Telemekhanika, 2010, Issue 2, Pages 128–140
(Mi at781)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Estimation and Filtering
Estimating the generalized autoregression model parameters for unknown noise distribution
A. A. Malyarenko Tomsk State University
Abstract:
We solve the problem of estimating the autoregressive parameters of a nonlinear stable stochastic process with discrete time of the AR($p$)/ARCH($p$) type with unknown ARCH($p$) process parameters. For the AR(1)/ARCH(1) model, we solve the estimation problem for all unknown process parameters, i.e., the autoregression parameter and two parameters of the noise process ARCH(1). We assume that the noise distributions are unknown. We show that the least square estimates are strongly consistent.
Citation:
A. A. Malyarenko, “Estimating the generalized autoregression model parameters for unknown noise distribution”, Avtomat. i Telemekh., 2010, no. 2, 128–140; Autom. Remote Control, 71:2 (2010), 291–302
Linking options:
https://www.mathnet.ru/eng/at781 https://www.mathnet.ru/eng/at/y2010/i2/p128
|
|