Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 1985, Issue 9, Pages 118–127 (Mi at7553)  

This article is cited in 1 scientific paper (total in 1 paper)

Simulation of Behavior and Intelligence

One dynamic problem in voting theory. II

S. G. Novikov

Moscow
Abstract: The paper continues considering dynamic aspects in one of the problems of the voting theory, where two players participate in the choice of the subsequently proposed programs. It is shown that a set of finite cycles to which the game trajectories converge is determined by the position of the ideal players and one voter.

Received: 12.07.1984
Bibliographic databases:
Document Type: Article
UDC: 65.012.122
Language: Russian
Citation: S. G. Novikov, “One dynamic problem in voting theory. II”, Avtomat. i Telemekh., 1985, no. 9, 118–127; Autom. Remote Control, 46 (1985), 1168–1177
Citation in format AMSBIB
\Bibitem{Nov85}
\by S.~G.~Novikov
\paper One dynamic problem in voting theory.~II
\jour Avtomat. i Telemekh.
\yr 1985
\issue 9
\pages 118--127
\mathnet{http://mi.mathnet.ru/at7553}
\zmath{https://zbmath.org/?q=an:0591.90005}
\transl
\jour Autom. Remote Control
\yr 1985
\vol 46
\pages 1168--1177
Linking options:
  • https://www.mathnet.ru/eng/at7553
  • https://www.mathnet.ru/eng/at/y1985/i9/p118
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024