Abstract:
The problem of optimal control of a single-sector economics over a finite time interval was studied for the class of the linear uniform production functions in terms of the criterion for maximum employer consumption under exponential growth of the manpower resources. Solution was obtained in the form of the “turnpike theorem”. Its properties were considered. The results obtained were specified for the case of the Cobb–Douglas production function.
Presented by the member of Editorial Board:A. I. Propoi
Citation:
N. S. Demin, E. V. Kuleshova, “Control of single-sector economy over a finite time interval with allowance for employer consumption”, Avtomat. i Telemekh., 2008, no. 9, 140–155; Autom. Remote Control, 69:9 (2008), 1576–1590
\Bibitem{DemKul08}
\by N.~S.~Demin, E.~V.~Kuleshova
\paper Control of single-sector economy over a~finite time interval with allowance for employer consumption
\jour Avtomat. i Telemekh.
\yr 2008
\issue 9
\pages 140--155
\mathnet{http://mi.mathnet.ru/at726}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2485388}
\zmath{https://zbmath.org/?q=an:1155.49309}
\elib{https://elibrary.ru/item.asp?id=15509913}
\transl
\jour Autom. Remote Control
\yr 2008
\vol 69
\issue 9
\pages 1576--1590
\crossref{https://doi.org/10.1134/S0005117908090117}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000259555300011}
\elib{https://elibrary.ru/item.asp?id=13589818}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-52949131841}
Linking options:
https://www.mathnet.ru/eng/at726
https://www.mathnet.ru/eng/at/y2008/i9/p140
This publication is cited in the following 7 articles:
Yu. I. Paraev, K. O. Poluektova, “Optimal control of a single-sector economy under random variations of fixed capital and labor resources”, Autom. Remote Control, 81:4 (2020), 704–712
Dmitruk A.V., Vdovina A.K., “Study of a One-Dimensional Optimal Control Problem With a Purely State-Dependent Cost”, Differ. Equat. Dyn. Syst., 28:1 (2020), 133–151
Paraev I J., Grekova I T., Poluektova K.O., “Optimal Control of One-Sector Economy Under Random Variation of Fixed Capital and Labor Resources”, Int. J. Geotech. Earthq., 2019, no. 46, 12–19
Jury I P., Tatiana I G., Ksenia P.O., “Optimal Control of One-Sector Economy Under Random Variation Labor Funds”, Int. J. Geotech. Earthq., 2018, no. 42, 23–29
Dmitruk A.V., Vdovina A.K., “Study of a One-Dimensional Optimal Control Problem With a Purely State-Dependent Cost”, Proceedings of 2016 International Conference Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy'S Conference), ed. Tkhai V., IEEE, 2016
A. V. Dmitruk, A. K. Vdovina, 2016 International Conference Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference), 2016, 1
N. S. Demin, E. V. Kuleshova, “Upravlenie odnosektornoi ekonomikoi pri ogranicheniyakh na nakoplenie i potreblenie”, Probl. upravl., 6 (2009), 9–17