Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 1980, Issue 8, Pages 122–132 (Mi at7159)  

Automated control systems

Approximating a data matrix as overlapping blocks

P. O. Aven, N. E. Kiseleva, I. B. Muchnik

Moscow
Abstract: Data matrices are approximated as intersecting submatrices. The method presumes lack of constraints on positioning of the approximating blocks in the «field» of the initial matrix; the blocks should not necessarily cover all the matrix elements. The method is related to conventional methods of linguistical analysis.

Received: 24.11.1979
Bibliographic databases:
Document Type: Article
UDC: 65.012.122
Language: Russian
Citation: P. O. Aven, N. E. Kiseleva, I. B. Muchnik, “Approximating a data matrix as overlapping blocks”, Avtomat. i Telemekh., 1980, no. 8, 122–132; Autom. Remote Control, 41:8 (1981), 1144–1153
Citation in format AMSBIB
\Bibitem{AveKisMuc80}
\by P.~O.~Aven, N.~E.~Kiseleva, I.~B.~Muchnik
\paper Approximating a data matrix as overlapping blocks
\jour Avtomat. i Telemekh.
\yr 1980
\issue 8
\pages 122--132
\mathnet{http://mi.mathnet.ru/at7159}
\zmath{https://zbmath.org/?q=an:0464.68087}
\transl
\jour Autom. Remote Control
\yr 1981
\vol 41
\issue 8
\pages 1144--1153
Linking options:
  • https://www.mathnet.ru/eng/at7159
  • https://www.mathnet.ru/eng/at/y1980/i8/p122
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024