Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 1980, Issue 6, Pages 96–100 (Mi at7110)  

Adaptive Systems

Stochastic algorithms of optimization with Markov noises in gradient measurements

S. V. Shil'man, A. I. Yastrebov

Gorky
Abstract: Convergence is investigated and rates of convergence are comparatively analyzed for gradient stochastic procedures in the presence of additive noises described by difference equations.

Received: 13.03.1979
Bibliographic databases:
Document Type: Article
UDC: 62-505
Language: Russian
Citation: S. V. Shil'man, A. I. Yastrebov, “Stochastic algorithms of optimization with Markov noises in gradient measurements”, Avtomat. i Telemekh., 1980, no. 6, 96–100; Autom. Remote Control, 41:6 (1980), 817–821
Citation in format AMSBIB
\Bibitem{ShiYas80}
\by S.~V.~Shil'man, A.~I.~Yastrebov
\paper Stochastic algorithms of optimization with Markov noises in gradient measurements
\jour Avtomat. i Telemekh.
\yr 1980
\issue 6
\pages 96--100
\mathnet{http://mi.mathnet.ru/at7110}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=627362}
\zmath{https://zbmath.org/?q=an:0457.90060}
\transl
\jour Autom. Remote Control
\yr 1980
\vol 41
\issue 6
\pages 817--821
Linking options:
  • https://www.mathnet.ru/eng/at7110
  • https://www.mathnet.ru/eng/at/y1980/i6/p96
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024