Abstract:
The problem of searching for a cost-minimum plan of supplies of uniform products to one consumer is considered. The set of admissible intervals of the supply volume and concave cost functions of supplies within each interval are preassigned for each supplier. The totally polynomial ε-approximate algorithm for the given problem and the pseudopolynomial exact algorithm for its partial case are suggested.
Citation:
A. V. Eremeev, M. Ya. Kovalyov, P. M. Kuznetsov, “Approximate solution of the control problem of supplies with many intervals and concave cost functions”, Avtomat. i Telemekh., 2008, no. 7, 90–97; Autom. Remote Control, 69:7 (2008), 1181–1187
\Bibitem{EreKovKuz08}
\by A.~V.~Eremeev, M.~Ya.~Kovalyov, P.~M.~Kuznetsov
\paper Approximate solution of the control problem of supplies with many intervals and concave cost functions
\jour Avtomat. i Telemekh.
\yr 2008
\issue 7
\pages 90--97
\mathnet{http://mi.mathnet.ru/at689}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2442518}
\zmath{https://zbmath.org/?q=an:1169.49038}
\transl
\jour Autom. Remote Control
\yr 2008
\vol 69
\issue 7
\pages 1181--1187
\crossref{https://doi.org/10.1134/S0005117908070096}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000257770200009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-47849130755}
Linking options:
https://www.mathnet.ru/eng/at689
https://www.mathnet.ru/eng/at/y2008/i7/p90
This publication is cited in the following 2 articles:
Eremeev V A., Kovalyov M.Y., Kuznetsov P.M., “Lot-Size Scheduling of a Single Product on Unrelated Parallel Machines”, Optim. Lett., 14:3 (2020), 557–568
Eremeev A., Kovalyov M., Kuznetsov P., “Single Product Lot-Sizing on Unrelated Parallel Machines With Non-Decreasing Processing Times”, Xi International Scientific and Technical Conference - Applied Mechanics and Dynamics Systems, Journal of Physics Conference Series, 944, IOP Publishing Ltd, 2018, UNSP 012032