Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2008, Issue 5, Pages 135–150 (Mi at662)  

Stochastic Systems

Optimal digital filtering of continuous signals in time lag systems

K. Yu. Polyakov

State Marine Technical University of St. Petersburg
References:
Abstract: The problem of the optimal estimation of continuous processes by discrete measurements in the presence of time lag (delay) is considered. On the basis of the theory of parametric transfer functions, an optimal, periodically nonstationary filter is developed, which affords a minimum of the estimation error variance at any instant of time. The comparison is performed of the obtained solution with the optimal stationary filter, which ensures a minimum of the mean (by continuous time) error variance. It is shown that in the problem of estimation of the Markov process of the first order, a simpler stationary filter with the fixer of order zero is insignificantly inferior to the optimal filter.
Presented by the member of Editorial Board: B. T. Polyak

Received: 30.05.2005
English version:
Automation and Remote Control, 2008, Volume 69, Issue 5, Pages 858–873
DOI: https://doi.org/10.1134/S0005117908050111
Bibliographic databases:
Document Type: Article
PACS: 02.30.Yy
Language: Russian
Citation: K. Yu. Polyakov, “Optimal digital filtering of continuous signals in time lag systems”, Avtomat. i Telemekh., 2008, no. 5, 135–150; Autom. Remote Control, 69:5 (2008), 858–873
Citation in format AMSBIB
\Bibitem{Pol08}
\by K.~Yu.~Polyakov
\paper Optimal digital filtering of continuous signals in time lag systems
\jour Avtomat. i Telemekh.
\yr 2008
\issue 5
\pages 135--150
\mathnet{http://mi.mathnet.ru/at662}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2437457}
\zmath{https://zbmath.org/?q=an:1156.93035}
\transl
\jour Autom. Remote Control
\yr 2008
\vol 69
\issue 5
\pages 858--873
\crossref{https://doi.org/10.1134/S0005117908050111}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000256252300011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-44349190226}
Linking options:
  • https://www.mathnet.ru/eng/at662
  • https://www.mathnet.ru/eng/at/y2008/i5/p135
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024