Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 1989, Issue 11, Pages 118–127 (Mi at6474)  

Adaptive Systems

Learning algorithms in solution of singular parameter estimation problems

A. P. Mikheev, S. V. Shil'man

Gorkiy
Abstract: Learning methods are used in design of linear rules applied to analysis and solution of parameter evaluation problems for processes described by their mathematical (possibly, physical) model.

Received: 15.03.1988
Bibliographic databases:
Document Type: Article
UDC: 62-501.72
Language: Russian
Citation: A. P. Mikheev, S. V. Shil'man, “Learning algorithms in solution of singular parameter estimation problems”, Avtomat. i Telemekh., 1989, no. 11, 118–127; Autom. Remote Control, 50:11 (1989), 1555–1562
Citation in format AMSBIB
\Bibitem{MikShi89}
\by A.~P.~Mikheev, S.~V.~Shil'man
\paper Learning algorithms in solution of singular parameter estimation problems
\jour Avtomat. i Telemekh.
\yr 1989
\issue 11
\pages 118--127
\mathnet{http://mi.mathnet.ru/at6474}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1033628}
\zmath{https://zbmath.org/?q=an:0706.93061}
\transl
\jour Autom. Remote Control
\yr 1989
\vol 50
\issue 11
\pages 1555--1562
Linking options:
  • https://www.mathnet.ru/eng/at6474
  • https://www.mathnet.ru/eng/at/y1989/i11/p118
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024