Abstract:
Sufficient conditions for polynomial convergence rate to the stationary regime and beta-mixing for some classes of ergodic discrete time birth-death processes are established.
Presented by the member of Editorial Board:S. F. Yashkov
Citation:
A. Yu. Veretennikov, “On mixing rate and convegence to stationary regime in discrete time Erlang problem”, Avtomat. i Telemekh., 2009, no. 12, 59–70; Autom. Remote Control, 70:12 (2009), 1992–2002
\Bibitem{Ver09}
\by A.~Yu.~Veretennikov
\paper On mixing rate and convegence to stationary regime in discrete time Erlang problem
\jour Avtomat. i Telemekh.
\yr 2009
\issue 12
\pages 59--70
\mathnet{http://mi.mathnet.ru/at574}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2641055}
\zmath{https://zbmath.org/?q=an:1180.93097}
\transl
\jour Autom. Remote Control
\yr 2009
\vol 70
\issue 12
\pages 1992--2002
\crossref{https://doi.org/10.1134/S0005117909120078}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273307900007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-73849093516}
Linking options:
https://www.mathnet.ru/eng/at574
https://www.mathnet.ru/eng/at/y2009/i12/p59
This publication is cited in the following 4 articles:
Alcala' Garrido H.A., Rivero-Angeles M.E., Aguirre Anaya E., “Primary User Emulation in Cognitive Radio-Enabled Wsns For Structural Health Monitoring: Modeling and Attack Detection”, J. Sens., 2019, 6950534
Alcala Garrido H.A., Rivero-Angeles M.E., Aguirre Anaya E., Cruz-Perez F.A., Lirio Castellanos-Lopez S., Hernandez-Valdez G., “Performance Analysis of a Wireless Sensor Network With Cognitive Radio Capabilities in Structural Health Monitoring Applications: a Discrete Model”, Int. J. Distrib. Sens. Netw., 14:5 (2018), 1550147718774001
Veretennikov A.Yu., “On the Rate of Convergence for Infinite Server Erlang-Sevastyanov's Problem”, Queueing Syst., 76:2, SI (2014), 181–203
A. Yu. Veretennikov, “On the rate of beta-mixing and convergence to a stationary distribution in continuous-time Erlang-type systems”, Problems Inform. Transmission, 46:4 (2010), 382–389