Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 1982, Issue 6, Pages 54–59 (Mi at5544)  

Deterministic Systems

On stabilization of linear control systems

A. M. Meilakhs

Leningrad
Abstract: A range is obtained of all positive definite quadrativ forms and their associated linear controllers such that the quadratic form monotonically decreases in all motions of the closed-loop system. A kindred problem is solved also for systems with incomplete information.

Received: 24.02.1981
Bibliographic databases:
Document Type: Article
UDC: 62-501.42
Language: Russian
Citation: A. M. Meilakhs, “On stabilization of linear control systems”, Avtomat. i Telemekh., 1982, no. 6, 54–59; Autom. Remote Control, 43:6 (1982), 747–751
Citation in format AMSBIB
\Bibitem{Mei82}
\by A.~M.~Meilakhs
\paper On stabilization of linear control systems
\jour Avtomat. i Telemekh.
\yr 1982
\issue 6
\pages 54--59
\mathnet{http://mi.mathnet.ru/at5544}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=689783}
\zmath{https://zbmath.org/?q=an:0501.93048}
\transl
\jour Autom. Remote Control
\yr 1982
\vol 43
\issue 6
\pages 747--751
Linking options:
  • https://www.mathnet.ru/eng/at5544
  • https://www.mathnet.ru/eng/at/y1982/i6/p54
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:114
    Full-text PDF :60
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024