Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2013, Issue 6, Pages 101–120 (Mi at5162)  

This article is cited in 4 scientific papers (total in 4 papers)

System Analysis and Operations Research

Nonlinear resolving functions for the travelling salesman problem

S. I. Sergeev

Moscow State University of Economics, Statistics, and Informatics, Moscow, Russia
Full-text PDF (254 kB) Citations (4)
References:
Abstract: We propose two approaches to finding lower bounds in the traveling salesman problem (TSP). The first approach, based on a linear specification of the resolving function $\varphi(t,y)$, uses a two-index TSP model in its solution. This model has many applications. The second approach, based on a nonlinear specification of the resolving function $\varphi(t,y)$, uses a single-index TSP model. This model is original and lets us significantly reduce the branching procedure in the branch-and-bound method for exact TSP solution. One cannot use the two-index TSP model here due to the nonlinear specification of the resolving function $\varphi(t,y)$.
Presented by the member of Editorial Board: A. A. Lazarev

Received: 10.12.2011
English version:
Automation and Remote Control, 2013, Volume 74, Issue 6, Pages 978–994
DOI: https://doi.org/10.1134/S0005117913060088
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. I. Sergeev, “Nonlinear resolving functions for the travelling salesman problem”, Avtomat. i Telemekh., 2013, no. 6, 101–120; Autom. Remote Control, 74:6 (2013), 978–994
Citation in format AMSBIB
\Bibitem{Ser13}
\by S.~I.~Sergeev
\paper Nonlinear resolving functions for the travelling salesman problem
\jour Avtomat. i Telemekh.
\yr 2013
\issue 6
\pages 101--120
\mathnet{http://mi.mathnet.ru/at5162}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3219983}
\transl
\jour Autom. Remote Control
\yr 2013
\vol 74
\issue 6
\pages 978--994
\crossref{https://doi.org/10.1134/S0005117913060088}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000322257500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879306833}
Linking options:
  • https://www.mathnet.ru/eng/at5162
  • https://www.mathnet.ru/eng/at/y2013/i6/p101
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:284
    Full-text PDF :67
    References:51
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024