Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 1987, Issue 10, Pages 112–121 (Mi at4580)  

Developing Systems

Dynamic proof that the entropy approach is sound for one range of communication systems

V. S. Levchenkov

Moscow
Abstract: For the case of communication with itineraries of various types the tools of topological Markov chains lead to a system of one-particle levels and a functional whose maximization defines a balanced distribution of elements among the itineraries. The relation of the functional is discussed with the expression of entropy employed in the conventional approach to simulation of communication systems.

Received: 15.05.1986
Document Type: Article
UDC: 519.218
Language: Russian
Citation: V. S. Levchenkov, “Dynamic proof that the entropy approach is sound for one range of communication systems”, Avtomat. i Telemekh., 1987, no. 10, 112–121
Citation in format AMSBIB
\Bibitem{Lev87}
\by V.~S.~Levchenkov
\paper Dynamic proof that the entropy approach is sound for one range of communication systems
\jour Avtomat. i Telemekh.
\yr 1987
\issue 10
\pages 112--121
\mathnet{http://mi.mathnet.ru/at4580}
Linking options:
  • https://www.mathnet.ru/eng/at4580
  • https://www.mathnet.ru/eng/at/y1987/i10/p112
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:108
    Full-text PDF :40
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024