Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 1987, Issue 10, Pages 89–96 (Mi at4572)  

Adaptive Systems

Recurrent algorithms of search optimization in the presence of relative noise. II. Optimal search procedures

D. A. Murtazin, A. S. Poznyak

Moscow
Abstract: In continuation of Ref. [1] argument problems of search optimization are solved in the presence of «diminishing» noise intensity. Algorithms are proposed which ensure the utmost rate of convergence determined in Ref. [1]. Realizable versions of these algorithms are provided.

Received: 14.01.1986
Document Type: Article
UDC: 62-505
Language: Russian
Citation: D. A. Murtazin, A. S. Poznyak, “Recurrent algorithms of search optimization in the presence of relative noise. II. Optimal search procedures”, Avtomat. i Telemekh., 1987, no. 10, 89–96
Citation in format AMSBIB
\Bibitem{MurPoz87}
\by D.~A.~Murtazin, A.~S.~Poznyak
\paper Recurrent algorithms of search optimization in the presence of relative noise. II. Optimal search procedures
\jour Avtomat. i Telemekh.
\yr 1987
\issue 10
\pages 89--96
\mathnet{http://mi.mathnet.ru/at4572}
Linking options:
  • https://www.mathnet.ru/eng/at4572
  • https://www.mathnet.ru/eng/at/y1987/i10/p89
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:120
    Full-text PDF :49
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024