Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2009, Issue 3, Pages 152–159 (Mi at439)  

This article is cited in 4 scientific papers (total in 4 papers)

Control in Social Economic Systems

On calculation of the power indices with allowance for the agent preferences

D. A. Shvarts

State University, Higher School of Economics, Moscow, Russia
Full-text PDF (183 kB) Citations (4)
References:
Abstract: In the general case, complexity of the algorithm to calculate the power indices grows exponentially with the number of voting agents. Yet the volume of calculations may be reduced dramatically if many coalitions have equal numbers of votes. The well-known algorithm for calculation of the Banzhaf and Shapley–Shubik indices was generalized, which enables fast calculation of the power indices where entry of the voting agent into a coalition depends on its preferences over the set of the rest of agents.
Presented by the member of Editorial Board: F. T. Aleskerov

Received: 05.08.2008
English version:
Automation and Remote Control, 2009, Volume 70, Issue 3, Pages 484–490
DOI: https://doi.org/10.1134/S0005117909030138
Bibliographic databases:
Document Type: Article
PACS: 07.05.Mh
Language: Russian
Citation: D. A. Shvarts, “On calculation of the power indices with allowance for the agent preferences”, Avtomat. i Telemekh., 2009, no. 3, 152–159; Autom. Remote Control, 70:3 (2009), 484–490
Citation in format AMSBIB
\Bibitem{Shv09}
\by D.~A.~Shvarts
\paper On calculation of the power indices with allowance for the agent preferences
\jour Avtomat. i Telemekh.
\yr 2009
\issue 3
\pages 152--159
\mathnet{http://mi.mathnet.ru/at439}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2530440}
\zmath{https://zbmath.org/?q=an:1166.91012}
\transl
\jour Autom. Remote Control
\yr 2009
\vol 70
\issue 3
\pages 484--490
\crossref{https://doi.org/10.1134/S0005117909030138}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000264462600012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67650245122}
Linking options:
  • https://www.mathnet.ru/eng/at439
  • https://www.mathnet.ru/eng/at/y2009/i3/p152
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:363
    Full-text PDF :149
    References:47
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024