Abstract:
We consider the synthesis problem for diagnostic filters based on nonlinear models of the systems being diagnosed. To solve the problem, we propose a new approach that unites the methods of algebra of functions and differential geometry when performing a nonlinear transformation of the original mathematical model for the diagnosed system with linear optimization techniques. An advantage of the proposed approach is that it overcomes principled obstacles of existing diagnostic filter synthesis methods and gets a solution for systems with parametric uncertainties.
Citation:
A. E. Shumskii, A. N. Zhirabok, “An optimization approach to nonlinear diagnostic filter synthesis”, Avtomat. i Telemekh., 2012, no. 8, 144–157; Autom. Remote Control, 73:8 (2012), 1390–1400
\Bibitem{ShuZhi12}
\by A.~E.~Shumskii, A.~N.~Zhirabok
\paper An optimization approach to nonlinear diagnostic filter synthesis
\jour Avtomat. i Telemekh.
\yr 2012
\issue 8
\pages 144--157
\mathnet{http://mi.mathnet.ru/at4057}
\transl
\jour Autom. Remote Control
\yr 2012
\vol 73
\issue 8
\pages 1390--1400
\crossref{https://doi.org/10.1134/S0005117912080127}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000307541300012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865485325}
Linking options:
https://www.mathnet.ru/eng/at4057
https://www.mathnet.ru/eng/at/y2012/i8/p144
This publication is cited in the following 1 articles:
A. N. Zhirabok, A. E. Shumskii, S. P. Solyanik, A. Yu. Suvorov, “Design of nonlinear robust diagnostic observers”, Autom. Remote Control, 78:9 (2017), 1572–1584