Abstract:
We consider the problem of optimal control of a flying object (FO) by the Pontryagin maximum principle with minimizing the control expenses. The dynamics of an FO in space is defined by Euler and Poisson equations.
A two-point boundary value problem is solved with the Newton's method. We give results of numerical modeling and recommendations to provide for convergence of the iterative procedure.
Citation:
S. A. Kabanov, A. A. Aleksandrov, “Optimizing the trajectory of spatial movement of a flying object as a solid body”, Avtomat. i Telemekh., 2010, no. 1, 46–56; Autom. Remote Control, 71:1 (2010), 39–48
\Bibitem{KabAle10}
\by S.~A.~Kabanov, A.~A.~Aleksandrov
\paper Optimizing the trajectory of spatial movement of a~flying object as a~solid body
\jour Avtomat. i Telemekh.
\yr 2010
\issue 1
\pages 46--56
\mathnet{http://mi.mathnet.ru/at4}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2641097}
\zmath{https://zbmath.org/?q=an:1186.49017}
\transl
\jour Autom. Remote Control
\yr 2010
\vol 71
\issue 1
\pages 39--48
\crossref{https://doi.org/10.1134/S0005117910010042}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273786000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-74849123267}
Linking options:
https://www.mathnet.ru/eng/at4
https://www.mathnet.ru/eng/at/y2010/i1/p46
This publication is cited in the following 2 articles:
E. A. Znamenskiy, D. S. Kabanov, S. A. Kabanov, E. N. Nikulin, “Synthesis of the Optimal Control of an Axisymmetric Rotating Aircraft with Using a Spiral Forecast ModeL”, J. Comput. Syst. Sci. Int., 63:6 (2024), 885
N. S. Abramov, D. A. Makarov, M. V. Khachumov, “Controlling flight vehicle spatial motion along a given route”, Autom. Remote Control, 76:6 (2015), 1070–1080