Abstract:
We construct a numerically stable algorithm (with respect to machine rounding errors) of adaptive Kalman filtering in order to solve the parametric identification problem for linear stationary stochastic discrete systems. We solve the problem in the state space. The proposed algorithm is formulated in terms of an orthogonal square-root covariance filter which lets us avoid a standard implementation of the Kalman filter.
Presented by the member of Editorial Board:A. V. Nazin
Citation:
Yu. V. Tsyganova, M. V. Kulikova, “On efficient parametric identification methods for linear discrete stochastic systems”, Avtomat. i Telemekh., 2012, no. 6, 34–51; Autom. Remote Control, 73:6 (2012), 962–975
\Bibitem{TsyKul12}
\by Yu.~V.~Tsyganova, M.~V.~Kulikova
\paper On efficient parametric identification methods for linear discrete stochastic systems
\jour Avtomat. i Telemekh.
\yr 2012
\issue 6
\pages 34--51
\mathnet{http://mi.mathnet.ru/at3812}
\transl
\jour Autom. Remote Control
\yr 2012
\vol 73
\issue 6
\pages 962--975
\crossref{https://doi.org/10.1134/S0005117912060033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305231100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84864565954}
Linking options:
https://www.mathnet.ru/eng/at3812
https://www.mathnet.ru/eng/at/y2012/i6/p34
This publication is cited in the following 11 articles:
V. M. Chubich, S. O. Kulabukhova, “Robastnaya protsedura parametricheskoi identifikatsii stokhasticheskikh nelineinykh nepreryvno-diskretnykh sistem”, Sib. zhurn. industr. matem., 24:3 (2021), 138–149
V. M. Chubich, S. O. Kulabukhova, “Robust Parametric Identification Procedure for Stochastic Nonlinear Continuous-Discrete Systems”, J. Appl. Ind. Math., 15:3 (2021), 384
Yu. V. Tsyganova, A. V. Tsyganov, “O vychislenii znachenii proizvodnykh v LD-razlozhenii parametrizovannykh matrits”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 23 (2018), 64–79
Kulikova M.V., Tsyganova J.V., “A Unified Square-Root Approach For the Score and Fisher Information Matrix Computation in Linear Dynamic Systems”, Math. Comput. Simul., 119 (2016), 128–141
Semushin I., Tsyganova J., Kulikova M., Tsyganov A., Peskov A., “Identification of Human Body Daily Temperature Dynamics Via Minimum State Prediction Error Method”, 2016 European Control Conference (Ecc), IEEE, 2016, 2429–2434
Kulikova M.V., Tsyganova J.V., Semushin I., “Adaptive Wave Filtering For Marine Vessels Within Ud-Based Algorithms”, 2016 European Control Conference (Ecc), IEEE, 2016, 807–812
M. V. Kulikova, J. V. Tsyganova, “Differentiating matrix orthogonal transformations”, Comput. Math. Math. Phys., 55:9 (2015), 1419–1431
Kulikova M.V., Tsyganova J.V., “Constructing Numerically Stable Kalman Filter-Based Algorithms For Gradient-Based Adaptive Filtering”, Int. J. Adapt. Control Signal Process., 29:11 (2015), 1411–1426
M. V. Kulikova, Yu. V. Tsyganova, “A general approach to constructing parameter identification algorithms in the class of square root filters with orthogonal and J-orthogonal tranformations”, Autom. Remote Control, 75:8 (2014), 1402–1419