Abstract:
Consideration was given to the approaches to solve the linear programming problems with an absolute precision attained through rational computation without roundoff in the algorithms of the simplex method. Realization of the modified simplex method with the use of the inverse matrix was shown to have the least spatial complexity. The main memory area sufficient to solve the linear programming problem with the use of rational computations without roundoff is at most 4lm4+O(lm3), where m is the minimal problem size and l is the number of bits sufficient to represent one element of the source data matrix. The efficiency of parallelization, that is, the ratio of acceleration to the number of processors, was shown to be asymptotically close to 100 %. Computing experiments on practical problems with the sparse matrix corroborated high efficiency of parallelization and demonstrated the advantage of the parallel method of inverse matrix.
Presented by the member of Editorial Board:A. I. Kibzun
Citation:
A. V. Panyukov, V. V. Gorbik, “Using massively parallel computations for absolutely precise solution of the linear programming problems”, Avtomat. i Telemekh., 2012, no. 2, 73–88; Autom. Remote Control, 73:2 (2012), 276–290
\Bibitem{PanGor12}
\by A.~V.~Panyukov, V.~V.~Gorbik
\paper Using massively parallel computations for absolutely precise solution of the linear programming problems
\jour Avtomat. i Telemekh.
\yr 2012
\issue 2
\pages 73--88
\mathnet{http://mi.mathnet.ru/at3612}
\transl
\jour Autom. Remote Control
\yr 2012
\vol 73
\issue 2
\pages 276--290
\crossref{https://doi.org/10.1134/S0005117912020063}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000300280000006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862129526}
Linking options:
https://www.mathnet.ru/eng/at3612
https://www.mathnet.ru/eng/at/y2012/i2/p73
This publication is cited in the following 9 articles:
Anatoly V. Panyukov, Yasir Ali Mezaal, Communications in Computer and Information Science, 1340, Advances in Optimization and Applications, 2020, 15
A. V. Panyukov, Ya. A. Mezaal, “Stable identification of linear autoregressive model with exogenous variables on the basis of the generalized least absolute deviation method”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 11:1 (2018), 35–43
A. N. Tyrsin, A. A. Azaryan, “Tochnoe otsenivanie lineinykh regressionnykh modelei metodom naimenshikh modulei na osnove spuska po uzlovym pryamym”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 10:2 (2018), 47–56
Panyukov A.V., Mezaal Ya.A., “Stable Estimation of Autoregressive Model Parameters With Exogenous Variables on the Basis of the Generalized Least Absolute Deviation Method”, IFAC PAPERSONLINE, 51:11 (2018), 1666–1669
A. V. Panyukov, V. A. Golodov, “Parallel algorithms of integer arithmetic in radix notations for heterogeneous computation systems with massive parallelism”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 8:2 (2015), 117–126
V. A. Golodov, A. V. Panyukov, “Masshtabiruemye algoritmy tselochislennoi arifmetiki i organizatsiya podderzhki ratsionalnykh vychislenii v geterogennykh sredakh”, Vestn. YuUrGU. Ser. Vych. matem. inform., 4:2 (2015), 71–88
A. V. Panyukov, V. A. Golodov, “Podkhod k resheniyu sistem lineinykh algebraicheskikh uravnenii s intervalnoi neopredelennostyu v iskhodnykh dannykh”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 6:2 (2013), 108–119
A. V. Panyukov, V. A. Golodov, “Programmnaya realizatsiya algoritma resheniya sistemy lineinykh algebraicheskikh uravnenii s intervalnoi neopredelennostyu v iskhodnykh dannykh”, UBS, 43 (2013), 78–94
A. V. Panyukov, “Predstavlenie summy Minkovskogo dlya dvukh poliedrov sistemoi lineinykh neravenstv”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 14, 108–119