Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2011, Issue 12, Pages 38–59 (Mi at3087)  

This article is cited in 25 scientific papers (total in 25 papers)

Stochastic Systems, Queuing Systems

The projection method for reaching consensus and the regularized power limit of a stochastic matrix

R. P. Agaev, P. Yu. Chebotarev

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia
References:
Abstract: In the coordination/consensus problem for multi-agent systems, a well-known condition of achieving consensus is the presence of a spanning arborescence in the communication digraph. The paper deals with the discrete consensus problem in the case where this condition is not satisfied. A characterization of the subspace $T_P$ of initial opinions (where $P$ is the influence matrix) that ensure consensus in the DeGroot model is given. We propose a method of coordination that consists of: (1) the transformation of the vector of initial opinions into a vector belonging to $T_P$ by orthogonal projection and (2) subsequent iterations of the transformation $P$. The properties of this method are studied. It is shown that for any non-periodic stochastic matrix $P$, the resulting matrix of the orthogonal projection method can be treated as a regularized power limit of $P$.
Presented by the member of Editorial Board: B. T. Polyak

Received: 22.02.2011
English version:
Automation and Remote Control, 2011, Volume 72, Issue 12, Pages 2458–2476
DOI: https://doi.org/10.1134/S0005117911120034
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: R. P. Agaev, P. Yu. Chebotarev, “The projection method for reaching consensus and the regularized power limit of a stochastic matrix”, Avtomat. i Telemekh., 2011, no. 12, 38–59; Autom. Remote Control, 72:12 (2011), 2458–2476
Citation in format AMSBIB
\Bibitem{AgaChe11}
\by R.~P.~Agaev, P.~Yu.~Chebotarev
\paper The projection method for reaching consensus and the regularized power limit of a~stochastic matrix
\jour Avtomat. i Telemekh.
\yr 2011
\issue 12
\pages 38--59
\mathnet{http://mi.mathnet.ru/at3087}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2933430}
\zmath{https://zbmath.org/?q=an:06194163}
\transl
\jour Autom. Remote Control
\yr 2011
\vol 72
\issue 12
\pages 2458--2476
\crossref{https://doi.org/10.1134/S0005117911120034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000298294400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855849827}
Linking options:
  • https://www.mathnet.ru/eng/at3087
  • https://www.mathnet.ru/eng/at/y2011/i12/p38
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:554
    Full-text PDF :142
    References:68
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024